Skip to main content

Immunology of Ocular Tumors

  • Chapter
  • First Online:
Clinical Ophthalmic Oncology

Abstract

Understanding the fundamental immunological processes that play a role in tumor development will help us to better understand how to develop safe and efficient immune intervention strategies against ocular tumors and their metastases. Antitumor immune responses by T cells and antibodies may limit tumor growth, while on the other hand, the presence of tumor-infiltrating leukocytes may lead to the production of cytokines that stimulate tumor growth. In addition, environmental factors such as aging may have an influence on the tumor. Aging is associated with a phenomenon known as para-inflammation, which is a local increase in infiltrating leukocytes and cytokines. New treatments with immune checkpoint inhibitors are helping many patients, but most uveal melanoma remain resistant against the new therapies. This necessitates research into the immunological parameters that inhibit effective T-cell responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3:879–89.

    Article  CAS  Google Scholar 

  2. Ksander BR, Rubsamen PE, Olsen KR, et al. Studies of tumor-infiltrating lymphocytes from a human choroidal melanoma. Invest Ophthalmol Vis Sci. 1991;32:3198–208.

    Google Scholar 

  3. Van Raamsdonk CD, Bezrookove V, Green G, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    Article  Google Scholar 

  4. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28:348–68.

    Article  Google Scholar 

  5. Harbour JW, Onken MD, Roberson ED, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  CAS  Google Scholar 

  6. Jensen OA, Andersen SR. Spontaneous regression of a malignant melanoma of the choroid. Acta Ophthalmol. 1974;52:173–82.

    Article  CAS  Google Scholar 

  7. Reese AB, Archila EA, Jones IS, et al. Necrosis of malignant melanoma of the choroid. Am J Ophthalmol. 1970;69:91–104.

    Google Scholar 

  8. Cochran AJ, Foulds WS, Damato BE, et al. Assessment of immunological techniques in the diagnosis and prognosis of ocular malignant melanoma. Br J Ophthalmol. 1985;69:171–6.

    Google Scholar 

  9. Kan-Mitchell J, Liggett PE, Harel W, et al. Lymphocytes cytotoxic to uveal and skin melanoma cells from peripheral blood of ocular melanoma patients. Cancer Immunol Immunother. 1991;33:333–40.

    Article  CAS  Google Scholar 

  10. Huang XQ, Mitchell MS, Liggett PE, et al. Non-fastidious, melanoma-specific CD8+ cytotoxic T lymphocytes from choroidal melanoma patients. Cancer Immunol Immunother. 1994;38:399–405.

    Google Scholar 

  11. Ksander BR, Geer DC, Chen PW, et al. Uveal melanomas contain antigenically specific and non-specific infiltrating lymphocytes. Curr Eye Res. 1998;17:165–73.

    Google Scholar 

  12. van der Bruggen P, Zhang Y, Chaux P, et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev. 2002;188:51–64.

    Article  Google Scholar 

  13. Mulcahy KA, Rimoldi D, Brasseur F, et al. Infrequent expression of the MAGE gene family in uveal melanomas. Int J Cancer. 1996;66:738–42.

    Article  CAS  Google Scholar 

  14. Chen PW, Murray TG, Uno T, et al. Expression of MAGE genes in ocular melanoma during progression from primary to metastatic disease. Clin Exp Metastasis. 1997;15:509–18.

    Google Scholar 

  15. Saba J, McIntyre CA, Rees RC, et al. Recognition of melanoma-associated peptides by peripheral blood mononuclear cells of ocular melanoma patients. Adv Exp Med Biol. 1998;451:241–4.

    Google Scholar 

  16. Blom DJ, Luyten GP, Mooy C, et al. Human leukocyte antigen class I expression. Marker of poor prognosis in uveal melanoma. Invest Ophthalmol Vis Sci. 1997;38:1865–72.

    Google Scholar 

  17. De Waard-Siebinga I, Hilders CG, Hansen BE, et al. HLA expression and tumor-infiltrating immune cells in uveal melanoma. Graefes Arch Clin Exp Ophthalmol. 1996;234:34–42.

    Google Scholar 

  18. Hurks HM, Metzelaar-Blok JA, Mulder A, et al. High frequency of allele-specific down-regulation of HLA class I expression in uveal melanoma cell lines. Int J Cancer. 2000;85:697–702.

    Google Scholar 

  19. Ericsson C, Seregard S, Bartolazzi A, et al. Association of HLA class I and class II antigen expression and mortality in uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42:2153–6.

    Google Scholar 

  20. Krishnakumar S, Abhyankar D, Lakshmi SA, et al. HLA class II antigen expression in uveal melanoma: correlation with clinicopathological features. Exp Eye Res. 2003;77:175–80.

    Google Scholar 

  21. Ma D, Luyten GP, Luider TM, et al. Relationship between natural killer cell susceptibility and metastasis of human uveal melanoma cells in a murine model. Invest Ophthalmol Vis Sci. 1995;36:435–41.

    Google Scholar 

  22. Ma D, Niederkorn JY. Transforming growth factor-beta down-regulates major histocompatibility complex class I antigen expression and increases the susceptibility of uveal melanoma cells to natural killer cell-mediated cytolysis. Immunology. 1995;86:263–9.

    CAS  PubMed Central  Google Scholar 

  23. Jager MJ, Hurks HM, Levitskaya J, et al. HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol. 2002;63:444–51.

    Google Scholar 

  24. Repp AC, Mayhew ES, Apte S, et al. Human uveal melanoma cells produce macrophage migration-inhibitory factor to prevent lysis by NK cells. J Immunol. 2000;165:710–5.

    Google Scholar 

  25. Apte RS, Sinha D, Mayhew E, et al. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol. 1998;160:5693–6.

    Google Scholar 

  26. Durie FH, Campbell AM, Lee WR, et al. Analysis of lymphocytic infiltration in uveal melanoma. Invest Ophthalmol Vis Sci. 1990;31:2106–10.

    Google Scholar 

  27. de la Cruz PO Jr, Specht CS, McLean IW. Lymphocytic infiltration in uveal malignant melanoma. Cancer. 1990;65:112–5.

    Google Scholar 

  28. Whelchel JC, Farah SE, McLean IW, et al. Immunohistochemistry of infiltrating lymphocytes in uveal malignant melanoma. Invest Ophthalmol Vis Sci. 1993;34:2603–6.

    Google Scholar 

  29. Bronkhorst IH, Vu TH, Jordanova ES, et al. Different subsets of tumor-infiltrating lymphocytes correlate with macrophage influx and monosomy 3 in uveal melanoma. Invest Ophthalmol Vis Sci. 2012;53:5370–8.

    Google Scholar 

  30. Mougiakakos D, Johansson CC, Trocme E, et al. Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer. 2010;116:2224–33.

    Google Scholar 

  31. Maat W, Ly LV, Jordanova ES, et al. Monosomy of chromosome 3 and an inflammatory phenotype occur together in uveal melanoma. Invest Ophthalmol Vis Sci. 2008;49:505–10.

    Google Scholar 

  32. Makitie T, Summanen P, Tarkkanen A, et al. Tumor-infiltrating macrophages (CD68(+) cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci. 2001;42:1414–21.

    Google Scholar 

  33. Bronkhorst IH, Ly LV, Jordanova ES, et al. Detection of M2-macrophages in uveal melanoma and relation with survival. Invest Ophthalmol Vis Sci. 2011;52:643–50.

    Article  Google Scholar 

  34. Toivonen P, Makitie T, Kujala E, et al. Microcirculation and tumor-infiltrating macrophages in choroidal and ciliary body melanoma and corresponding metastases. Invest Ophthalmol Vis Sci. 2004;45:1–6.

    Google Scholar 

  35. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.

    Article  CAS  Google Scholar 

  36. Bronkhorst IH, Jager MJ. Uveal melanoma: the inflammatory microenvironment. J Innate Immun. 2012;4:454–62.

    Article  CAS  Google Scholar 

  37. Gezgin G, Dogrusöz M, Van Essen TH, et al. Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol Immunother. 2017;66:903–12.

    Article  CAS  Google Scholar 

  38. Vu TH, Bronkhorst IH, Versluis M, et al. Analysis of inflammatory cells in uveal melanoma after prior irradiation. Invest Ophthalmol Vis Sci. 2013;54:360–9.

    Article  CAS  Google Scholar 

  39. Leyvraz S, Keilholz U. Ocular melanoma: what’s new? Curr Opin Oncol. 2012;24:162–9.

    Article  CAS  Google Scholar 

  40. Sapoznik S, Hammer O, Ortenberg R, et al. Novel anti-melanoma immunotherapies: disarming tumor escape mechanisms. Clin Dev Immunol. 2012;2012:818214.

    Article  Google Scholar 

  41. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  Google Scholar 

  42. Danielli R, Ridolfi R, Chiarion-Sileni V, et al. Ipilimumab in pretreated patients with metastatic uveal melanoma: safety and clinical efficacy. Cancer Immunol Immunother. 2012;61:41–8.

    Article  CAS  Google Scholar 

  43. Jindal V. Role of immune checkpoint inhibitors and novel immunotherapies in uveal melanoma. Chin Clin Oncol. 2018;7(1):8. https://doi.org/10.21037/cco.2018.01.05.

  44. Yang W, Chen PW, Li H, et al. PD-L1: PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro. Invest Ophthalmol Vis Sci. 2008;49:2518–25.

    Google Scholar 

  45. Richtig E, Langmann G, Schlemmer G, et al. Safety and efficacy of interferon alfa-2b in the adjuvant treatment of uveal melanoma. Ophthalmologe. 2006;103:506–11.

    Article  CAS  Google Scholar 

  46. de Vries IJ, Bernsen MR, Lesterhuis WJ, et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol. 2005;23:5779–87.

    Article  Google Scholar 

  47. Bol KF, Mensink HW, Aarntzen EH, et al. Long overall survival after dendritic cell vaccination in metastatic uveal melanoma patients. Am J Ophthalmol. 2014;158:939–47.

    Article  CAS  Google Scholar 

  48. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    Article  CAS  Google Scholar 

  49. Krishna Y, McCarthy C, Kalirai H, et al. Inflammatory cell infiltrates in advanced metastatic uveal melanoma. Hum Pathol. 2017;66:159–66.

    Google Scholar 

  50. Abdel-Rahman MH, Cebulla CM, Verma V, et al. Monosomy 3 status of uveal melanoma metastases is associated with rapidly progressive tumors and short survival. Exp Eye Res. 2012;100:26–31.

    Article  CAS  Google Scholar 

  51. Halama N, Michel S, Kloor M, et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 2011;71:5670–7.

    Article  CAS  Google Scholar 

  52. Fridman WH, Galon J, Pages F, et al. Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res. 2011;71:5601–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine J. Jager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jager, M.J., Bronkhorst, I.H.G. (2019). Immunology of Ocular Tumors. In: Singh, A., Damato, B. (eds) Clinical Ophthalmic Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-04489-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04489-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04488-6

  • Online ISBN: 978-3-030-04489-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics