Skip to main content

Some Applications of Fractional Derivatives in Many-Particle Disordered Large Systems

  • Chapter
  • First Online:
Fractional Dynamics, Anomalous Transport and Plasma Science

Abstract

In this chapter we consider several possibilities for introducing fractional derivatives with respect to time and spatial coordinate into the equations of a many-particle system. We considered the possibility of introducing a fractional time derivative in the quantum-mechanical Heisenberg equation, as well as elucidating the physical conditions for the appearance of fractional derivatives with respect to the spatial coordinate in the equation for the quantum Green’s functions. For the latter, the Hartree-Fock approximation is used to calculate the interparticle interaction potential. Finally, we applied the fractional derivative approach for specific tasks in plasma science. Namely, using an approach based on a fractional-order kinetic equation on the time variable, we investigated two types of instability in a gas discharge: the instability of the electron avalanche and the sticking instability in a non-self-sustaining discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We used the property of the fractional Riemann-Liouville derivative: \(\partial_{ - \infty x}^{\beta } {\text{e}}^{ax} = a^{\beta } {\text{e}}^{ax}\).

References

  1. I.M. Lifshitz, M.I. Kaganov, Sov. Phys. Usp. 2, 831–855 (1960)

    Article  ADS  Google Scholar 

  2. F.G. Bass, E.A. Rubinstein, Sov. Phys.: Solid State 19, 800 (1977)

    Google Scholar 

  3. F.G. Bass, V.V. Konotop, A.P. Panchekha, JETP 99(6), 1055–1060 (1989)

    Google Scholar 

  4. F.G. Bass, A.D. Panchekha, JETP 99(6), 1711–1717 (1991)

    Google Scholar 

  5. R. Hilfer (ed.), Applications of Fractional Calculus in Physics (World Scientific, 2000), p. 463

    Google Scholar 

  6. V.V. Uchaikin, The method of fractional derivatives (Publishing house “Artichoke”, Ulyanovsk, 2008), p. 512

    Google Scholar 

  7. V.V. Uchaikin, Anomalous diffusion and fractional stable distributions. JETP 97(4), 810–825 (2003)

    Article  ADS  Google Scholar 

  8. A.A. Stanislavsky, Probability interpretation of the integral of fractional order. Theor. Math. Phys. 138(3), 418–431 (2004)

    Article  Google Scholar 

  9. R.P. Meilanov, M.R. Shabanova, Peculiarities of solutions to the heat conduction equation in fractional derivatives. Tech. Phys. 56(7), 903–908 (2011)

    Article  Google Scholar 

  10. R.T. Sibatov, V.V. Uchaikin, Fractional differential approach to dispersive transport in semiconductors. Phys. Usp. 52(10), 1019–1043 (2009)

    Article  ADS  Google Scholar 

  11. SSh Rekhviashvili, Application of fractional integro-differentiation to the calculation of the thermodynamic properties of surfaces. Phys. Solid State 49(4), 796–799 (2007)

    Article  ADS  Google Scholar 

  12. X.-B. Wang, J.-X. Li, Q. Jiang, Z.-H. Zhang, Phys. Rev. 49(14), 9778–9781 (1994)

    Article  Google Scholar 

  13. A.V. Milovanov, J.J. Rasmussen, Phys. Rev. B 66, 134505 (2002)

    Article  ADS  Google Scholar 

  14. F.J. Dyson, Commun. Math. Phys. 12(2), 91–107 (1969)

    Google Scholar 

  15. F.J. Dyson, Commun. Math. Phys. 12(3), 212–215 (1969)

    Google Scholar 

  16. F.J. Dyson, Commun. Math. Phys. 21(4), 269–283 (1971)

    Google Scholar 

  17. N. Laskin, G. Zaslavsky, Phys. A 368, 38–54 (2006)

    Article  Google Scholar 

  18. V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-adic Analysis and Mathematical Physics (M.: Nauka, 1994), p. 352 s

    Google Scholar 

  19. N. Laskin, Phys. Lett. A 268, 298–305 (2000)

    Google Scholar 

  20. N. Laskin, Phys. Rev. E 62(3), 3135–3145 (2000)

    Google Scholar 

  21. V.M. Eleonsky, V.G. Korolev, N.E. Kulagin, Lett. JETP 76(12), 859–862 (2002)

    Google Scholar 

  22. V.E. Tarasov, Phys. Rev. E 71(1), 011102 (2005)

    Google Scholar 

  23. V.E. Tarasov, Chaos 16(3), 033108 (2006)

    Google Scholar 

  24. V.E. Tarasov, Mod. Phys. Lett. B 21(5), 237–248 (2007)

    Google Scholar 

  25. A.A. Potapov, Fractals and Scaling in the Radar: A Look from 2015, Book of Abstracts 8nd International Conference (CHAOS’ 2015) on Chaotic Modeling, Simulation and Applications, Henri Poincaré Institute, Paris, 26–29 May 2015, pp. 101, 102

    Google Scholar 

  26. A.A. Potapov, V.A. German, Detection of artificial objects with fractal signatures. Pattern Recogn. Image Anal. 8(2), 226–229 (1998)

    Google Scholar 

  27. A.A. Potapov, Y.V. Gulyaev, S.A. Nikitov, A.A. Pakhomov, V.A. German, Newest Images Processing Methods, ed. by A.A. Potapov (FIZMATLIT, Moscow, 2008), p. 496

    Google Scholar 

  28. Z.Z. Alisultanov, R.P. Meilanov, Theor. Math. Phys. 171, 404 (2012)

    Article  Google Scholar 

  29. Z.Z. Alisultanov, R.P. Meilanov, Theor. Math. Phys. 173(1), 1445–1456 (2012)

    Article  Google Scholar 

  30. Z.Z. Alisultanov, G.B. Ragimkhanov, Fractional-differential approach to the study of instability in a gas discharge. Chaos, Solitons Fractals 107, 39–42 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. A.N. Bogolyubov, A.A. Potapov, S.Sh. Rekhviashvili, Introduction of fractional integro-differentiation in classical electrodynamics. WMU. Phys. Astron. Series 3, 64(4), 9–12 (2009)

    Google Scholar 

  32. A.M Nakhushev, Fractional Calculus and Its Application (Fizmatlit, Moscow, 2003), p. 272 sec

    Google Scholar 

  33. N. Van Hieu, Fundamentals of the Method of Second Quantization (Energoatomizdat, Moscow, 1984

    Google Scholar 

  34. R. Mailanov, M.Y. Yanpolov, Lett. ZhTF 28(1), 67–73 (2001)

    Google Scholar 

  35. R.P. Meilanov, Z.Z. Alisultanov, International Russian-Bulgarian Symposium “Equations of the Mixed Type” (Nalchik, 2010), p. 161

    Google Scholar 

  36. A. Potapov, Fractals in Radiophysics and Radar: Sampling Topology (The University Book, Moscow, 2005), p. 848

    Google Scholar 

  37. M. Naber, Time fractional Schrodinger equation Department of Mathematics, Monroe, Michigan, 48161-9746 (2004)

    Google Scholar 

  38. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 2 (Nauka, Moscow, 1978)

    Google Scholar 

  39. G.B. Kadanov, Quantum Statistical Mechanics (Mir, Moscow, 1964)

    Google Scholar 

  40. C.G. Samko, F.F. Kilbas, O.I. Marichev, Integrals and Derivatives of Fractional Order and Some Applications (Science and Technology, Minsk, 1987), p. 688

    Google Scholar 

  41. A.B. Alkhasov, R.P. Meilanov, M.R. Shabanova, Fiz 84(2), 309–317 (2011)

    Google Scholar 

  42. I.G. Kaplan, Introduction to the Theory of Intermolecular Interactions (Science, Moscow, 1982), p. 312

    Google Scholar 

  43. R. Balescu, Statistical Mechanics of Charged Particles (Mir, Moscow, 1967), p. 516

    Google Scholar 

  44. W. Weibull, J. Appl. Mech.-Trans. ASME. 18(3), 293–297 (1951)

    Google Scholar 

  45. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1 (Nauka, Moscow, 1978)

    Google Scholar 

  46. I.A. Kvasnikov, Thermodynamics and Statistical Physics, vol. 4. Quantum statistics. - M.: Editorial URSS (2002)

    Google Scholar 

  47. A.N. Kozlov, V.N. Flerov, Lett. JETP. 25(1), 54–58 (1977)

    Google Scholar 

  48. V.F. Grin, D.S. Lepsveridze, EA Sal’kov et al., Pis’ma Zh. 87(8), 415–418 (1975)

    Google Scholar 

  49. E.G. Maksimov, Sh Van, M.V. Magnitskaya, S.V. Ebert, Pis’ma Zh. T. 21(7), 507–510 (2008)

    Google Scholar 

  50. Y.E. Lozovik, S.P. Merkulova, A.A. Sokolik, UFN. 178, 757–776 (2008)

    Google Scholar 

  51. G. Savini, A.C. Ferrari, F. Giustino, Phys. Rev. Lett. 105(037002), 1–4 (2010)

    Google Scholar 

  52. A.V. Milovanov, J.J. Rasmussen, arXiv:cond-mat/0201504v3 [cond-mat.supr-con] 8 Oct 2002

  53. S.I. Yakovlenko, Tech. Phys. Lett. 2005. T.31. AT 4, 76–82

    Google Scholar 

  54. V.I. Karelin, A.A. Trenkin, Technical physics. Russ. J. Appl. Phys. 78(3), 29–35 (2008)

    Google Scholar 

  55. A.H. Nielsen, H.L. Pécseli, J. Juul, Phys. Plasmas 3, 1530 (1996)

    Article  ADS  Google Scholar 

  56. B.A. Carreras, B. van Milligen, M.A. Pedrosa, R. Balbín, C. Hidalgo, D.E. Newman, E. Sánchez, M. Frances, I. García-Cortés, J. Bleuel, M. Endler, S. Davies, G.F. Matthews, Phys. Rev. Lett. 80, 4438 (1998)

    Article  ADS  Google Scholar 

  57. B.A. Carreras, B. van Milligen, C. Hidalgo, R. Balbin, E. Sanchez, I. Garcia-Cortes, M.A. Pedrosa, J. Bleuel, M. Endler, Phys. Rev. Lett. 83, 3653 (1999)

    Article  ADS  Google Scholar 

  58. V. Naulin, A. H. Nielsen, J. Juul Rasmussen, Phys. Plasmas 6, 4575 (1999)

    Google Scholar 

  59. G.M. Zaslavsky, M. Edelman, H. Weitzner, B. Carreras, G. McKee, R. Bravenec, R. Fonck, Phys. Plasmas 7, 3691 (2000)

    Article  ADS  Google Scholar 

  60. J. Kigami, Analysis on Fractals (Cambridge University Press, 2001)

    Google Scholar 

  61. R.S. Strichartz, Differential Equations on Fractals (Princeton University Press, Princeton and Oxford, 2006)

    MATH  Google Scholar 

Download references

Acknowledgements

AZZ, AAM and RGB dedicate this work to the memory of a friend and teacher Prof. Ruslan Meilanov.

AZZ thanks: President grant MK-2130.2017.2, RFBR (# 18-02-01022a).

AAP is grateful to the China grant “Leading Talent Program in Guangdong Province” (No. 00201502, 2016-2020) JiNan University (China, Guangzhou).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Z. Alisultanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alisultanov, Z.Z., Agalarov, A.M., Potapov, A.A., Ragimkhanov, G.B. (2018). Some Applications of Fractional Derivatives in Many-Particle Disordered Large Systems. In: Skiadas, C. (eds) Fractional Dynamics, Anomalous Transport and Plasma Science. Springer, Cham. https://doi.org/10.1007/978-3-030-04483-1_7

Download citation

Publish with us

Policies and ethics