Skip to main content

Machine Learning Techniques to Select a Reduced and Optimal Set of Sensors for the Design of Ad Hoc Sensory Systems

  • Conference paper
  • First Online:
Sensors (CNS 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 539))

Included in the following conference series:

  • 1199 Accesses

Abstract

The first step of this research has been to discriminate, by means of a commercial electronic nose (e-nose), the maturity evolution of seven types of fruits stored in refrigerated cells, from the post-harvest period till the beginning of the marcescence. The final aim was to determine a procedure to select a reduced set of sensors that can be efficiently used to monitor the same class of fruits by a low cost system with few, suitable sensors without loss in accuracy and generalization. To define the best subset we have compared the use of a projection technique (the Principal Component Analysis, PCA) with the sequential feature selection technique (Sequential Forward Selection, SFS) and the Genetic Algorithm (GA) technique by using classification schemes like Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (kNN) and applying two data pre-processing methods. We have determined a subset of only three sensors which gives a classification accuracy near 100%. This procedure can be generalized to other experimental situations to select a minimal and optimal set of sensors to be used in consumer applications for the design of ad hoc sensory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilson, A.D., Baietto, M.: Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009)

    Article  Google Scholar 

  2. Tang, K.T., Chiu, S.W., Pan, C.H., Hsieh, H.Y., Liang, Y.S., Liu, S.C.: Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 10, 9179–9193 (2010). https://doi.org/10.3390/s101009179

    Article  Google Scholar 

  3. Dutta, R., Hines, E.L., Gardner, J.W., Kashwan, K.R., Bhuyan, M.: Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens. Actuators B Chem. 94, 228–237 (2003). https://doi.org/10.1016/s0925-4005(03)00367-8

    Article  Google Scholar 

  4. de Vries, R., Brinkman, P., van der Schee, M.P., Fens, N., Dijkers, E., Bootsma, S.K., de Jongh, F.H.C., Sterk, P.J.: Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis. J. Breath Res. 9, 046001 (2015)

    Article  Google Scholar 

  5. Wang, J., Gao, D., Wang, Z.: Quality-grade evaluation of petroleum waxes using an electronic nose with a TGS gas sensor array. Meas. Sci. Technol. 26, 085005 (9 pp) (2015)

    Article  Google Scholar 

  6. Wongchoosuk, C., Lutz, M., Kerdcharoen, T.: Detection and classification of human body odor using an electronic nose. Sensors 9, 7234–7249 (2009). https://doi.org/10.3390/s90907234

    Article  Google Scholar 

  7. Yin, X., Zhang, L., Tian, F., Zhang, D.: Temperature modulated gas sensing E-nose system for low-cost and fast detection. IEEE Sens. J. 16(2) (2016)

    Article  Google Scholar 

  8. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L., Walsh, M.J., McAinsh, M.R., Stone, N., Martin, F.L.: Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016). https://doi.org/10.1038/nprot.2016.036

    Article  Google Scholar 

  9. Ollesch, J., Drees, S.L., Heise, H.M., Behrens, T., Bruning, T., Gerwert, K.: FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification. Analyst 138, 4092 (2013)

    Article  Google Scholar 

  10. Benedetti, S., Buratti, S., Spinardi, A., Mannino, S., Mignani, I.: Electronic nose as a non-destructive tool to characterise peach cultivars and to monitor their ripening stage during shelf-life. Postharvest Biol. Technol. 47, 181–188 (2008). https://doi.org/10.1016/j.postharvbio.2007.06.012

    Article  Google Scholar 

  11. Hernández Gómez, A., Wang, J., Hu, G., García Pereira, A.: Electronic nose technique potential monitoring mandarin maturity. Sens. Actuators B Chem. 113, 347–353 (2006). https://doi.org/10.1016/j.snb.2005.03.090

    Article  Google Scholar 

  12. Hernández Gómez, A., Wang, J., Hu, G., García Pereira, A.: Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT-Food. Sci. Technol. 40, 681–689 (2007). https://doi.org/10.1016/j.lwt.2006.03.010

    Article  Google Scholar 

  13. Baldwin, E.A., Bai, J., Plotto, A., Dea, S.: Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors 11, 4744–4766 (2011). https://doi.org/10.3390/s110504744

    Article  Google Scholar 

  14. Rizzolo, A., Bianchi, G., Vanoli, M., Lurie, S., Spinelli, L., Torricelli, A.: Electronic nose to detect volatile compound profile and quality changes in ‘Spring Belle’ peach (Prunus persica L.) during cold storage in relation to fruit optical properties measured by time-resolved reflectance spectroscopy. J. Agric. Food Chem. 61, 1671–1685 (2013). https://doi.org/10.1021/jf302808g

    Article  Google Scholar 

  15. Scott, S.M., James, D., Ali, Z.: Data analysis for electronic nose systems. Microchim. Acta 156, 183–2007 (2007). https://doi.org/10.1007/s00640-006-0623-9

    Article  Google Scholar 

  16. Gorunescu, F.: Data Mining, Concepts, Models and Techniques. Intelligent Systems Reference Library, vol. 12. Springer, Berlin, Heidelberg (2011). ISBN: 978-3-642-19720-8 (Print) 978-3-642-19721-5 (Online); https://doi.org/10.1007/978-3-642-19721-5

    Book  Google Scholar 

  17. Gutierrez-Osuna, R.: Pattern analysis for machine olfaction: a review. IEEE Sens. J. 2(3), 189–202 (2002)

    Article  Google Scholar 

  18. Boilot, P., Hines, E.L., Gongora, M.A., Folland, R.S.: Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sens. Actuators B Chem. 88, 80–88 (2003)

    Article  Google Scholar 

  19. Dutta, R., Hines, E.L., Gardner, J.W., Udrea, D.D., Boilot, P.: Non-destructive egg freshness determination: an electronic nose based approach. Meas. Sci. Technol. 14, 190–198 (2003)

    Article  Google Scholar 

  20. Lavine, B.K.: Chemometrics: clustering and classification of analytical data. In: Encyclopedia of Analytical Chemistry, pp. 1–21. Wiley, Chichester (2000)

    Google Scholar 

  21. Gardner, J.W., Boilot, P., Hines, E.L.: Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens. Actuators B Chem. 106, 114–121 (2005). https://doi.org/10.1016/j.snb.2004.05.043

    Article  Google Scholar 

  22. Ehret, B., Safenreiter, K., Lorenz, F., Biermann, J.: A new feature extraction method for odour classification. Sens. Actuators B Chem. 158, 75–88 (2011). https://doi.org/10.1016/j.snb.2011.05.042

    Article  Google Scholar 

  23. The MathWorks, Inc., Natick, MA, USA

    Google Scholar 

  24. Leopold, J.H., Bos, L.D., Sterk, P.J., Schultz, M.J., Fens, N., Horvath, I., Bikov, A., Montuschi, P., Di Natale, C., Yates, D.H., Abu-Hanna, A.: Comparison of classification methods in breath analysis by electronic nose. J. Breath Res. 9, 046002 (2015)

    Article  Google Scholar 

  25. Pardo, M., Kwong, L.G., Sberveglieri, G., Brubaker, K., Schneider, J.F., Penrose, W.R., Stetter, J.R.: Data analysis for a hybrid sensor array. Sens. Actuators B Chem. 106, 136–143 (2005). https://doi.org/10.1016/j.snb.2004.05.045

    Article  Google Scholar 

  26. Guo, D., Zhang, D., Zhang, L.: An LDA based sensor selection approach used in breath analysis system. Sens. Actuators B Chem. 157, 265–274 (2011). https://doi.org/10.1016/j.snb.2011.03.061

    Article  MathSciNet  Google Scholar 

  27. Oluleye, B., Leisa, A., Leng, J., Dean, D.: A genetic algorithm-based feature selection. Br. J. Math. Comput. Sci. 4(21), 3090–3106 (2014)

    Article  Google Scholar 

  28. Questier, F., Walczak, B., Massart, D.L., Bouconb, C., de Jong, S.: Feature selection for hierarchical clustering. Anal. Chim. Acta 466, 311–324 (2002)

    Article  Google Scholar 

  29. Pardo, A., Marco, S., Calaza, C., Ortega, A., Perera, A., Sundic, T., Samitier, J.: Methods for sensor selection in pattern recognition. In: Gardner, J.W., Persaud, K.C. (eds.) Electronic Noses and Olfaction, pp. 83–88. IoP Publishing, Bristol (2000)

    Google Scholar 

  30. Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic algorithm toolbox for use with MATLAB, Free Computer Programs on the Website of the Department of Automatic Control and Systems Engineering, University of Sheffield (1994)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by Italian Ministry of Economic Development thanks to “Ricerca di Sistema elettrico”, “ORTOFRULOG”, and “Magazzino Viag-giante” projects. The authors are thankful to Paolo di Lorenzo for his support in the experimental campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Quercia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quercia, L., Palumbo, D. (2019). Machine Learning Techniques to Select a Reduced and Optimal Set of Sensors for the Design of Ad Hoc Sensory Systems. In: Andò, B., et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics