Skip to main content

Inference of Functions, Roles, and Applications of Chemicals Using Linked Open Data and Ontologies

  • Conference paper
  • First Online:
Semantic Technology (JIST 2018)

Abstract

A simple method to efficiently collect reliable chemical information was studied for developing an ontological foundation. Even ChEBI, a major chemical ontology, which consists of approximately 90,000 chemicals and information about 1,000 biological and chemical roles, and applications, lacks information regarding the roles of most of the chemicals. NikkajiRDF, linked open data which provide information of approximately 3.5 million chemicals and 694 application examples, is also being developed. NikkajiRDF was integrated with Interlinking Ontology for Biological Concepts (IOBC), which includes 80,000 concepts, including information on a number of diseases and drugs. As a result, it was possible to infer new information on at least one of the 432 biological and chemical functions, applications and involvements with biological phenomena, including diseases to 5,038 chemicals using IOBC’s ontological structure. Furthermore, seven chemicals and drugs, which would be involved in 16 diseases, were discovered using knowledge graphs that were developed from IOBC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    sio: <http://semanticscience.org/resource/>.

  2. 2.

    dcterms: <http://purl.org/dc/terms/>.

  3. 3.

    rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

  4. 4.

    wdt: <http://www.wikidata.org/prop/direct/>.

  5. 5.

    iobc: <http://purl.jp/bio/4/id/>.

  6. 6.

    xkos: <http://rdf-vocabulary.ddialliance.org/xkos#>.

  7. 7.

    mesh: <http://id.nlm.nih.gov/mesh/>.

References

  1. Kimura, T., Kushida, T.: Openness of Nikkaji RDF data and integration of chemical information by Nikkaji acting as a hub. J. Inf. Process. Manag. 58(3), 204–212 (2015)

    Article  Google Scholar 

  2. NikkajiRDF Homepage in Life Science Database Archive. http://doi.org/10.18908/lsdba.nbdc01530–02-000. Accessed 8 Aug 2018

  3. NikkajiRDF Homepage in NBDC RDF Portal. https://integbio.jp/rdf/?view=detail&id=nikkaji. Accessed 8 Aug 2018

  4. Heller, S., McNaught, A., Stein, S., Tchekhovskoi, D., Pletnev, I.: InChI-the worldwide chemical structure identifier standard. J. Cheminform. 5(1), 7 (2013)

    Article  Google Scholar 

  5. Fu, G., Batchelor, C., Dumontier, M., Hastings, J., Willighagen, E., Bolton, E.: PubChemRDF: towards the semantic annotation of PubChem compound and substance databases. J. Cheminform. 7(1), 34 (2015)

    Article  Google Scholar 

  6. Willighagen, E.L., et al.: The ChEMBL database as linked open data. J. Cheminform. 5(1), 23 (2013)

    Article  Google Scholar 

  7. Hastings, J., Chepelev, L., Willighagen, E., Adams, N., Steinbeck, C., Dumontier, M.: The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web. PloS 6(10), e25513 (2011)

    Article  Google Scholar 

  8. Dumontier, M., et al.: The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery. J. Biomed. Semant. 5(1), 14 (2014)

    Article  Google Scholar 

  9. Chambers, J., et al.: UniChem: a unified chemical structure cross-referencing and identifier tracking system. J. Cheminform. 5(1), 3 (2013)

    Article  Google Scholar 

  10. NBDC RDF Portal SPARQL Endpoint. https://integbio.jp/rdf/sparql. Accessed 8 Aug 2018

  11. Kushida, T., et al.: Efficient construction of a new ontology for life sciences by sub-classifying related terms in the Japan Science and Technology Agency Thesaurus. In: Proceedings of the 8th International Conference on Biomedical Ontology (ICBO 2017), vol. 2137, pp. 1–6. CEUR-WS.org, Newcastle (2017)

    Google Scholar 

  12. IOBC Homepage in BioPortal. http://purl.bioontology.org/ontology/IOBC. Accessed 8 Aug 2018

  13. Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37(suppl_2), W170–W173 (2009)

    Article  Google Scholar 

  14. IOBC SPARQL endpoint, http://lod.hozo.jp/repositories/IOBC. Accessed 8 Aug 2018

  15. Hastings, J., et al.: The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 41(D1), D456–D463 (2013)

    Article  Google Scholar 

  16. Wikipedia. https://www.wikipedia.org/. Accessed 8 Aug 2018

  17. Bizer, C., et al.: DBpedia-A crystallization point for the Web of Data. Web Semant.: Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)

    Article  Google Scholar 

  18. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  19. Ertl, P., Patiny, L., Sander, T., Rufener, C., Zasso, M.: Wikipedia chemical structure explorer: substructure and similarity searching of molecules from Wikipedia. J. Cheminform. 7(1), 10 (2015)

    Google Scholar 

  20. DBpedia public SPARQL endpoint. https://dbpedia.org/sparql. Accessed 8 Aug 2018

  21. Wikidata public SPARQL endpoint. https://query.wikidata.org/. Accessed 8 Aug 2018

  22. ChEBI ontology files. ftp://ftp.ebi.ac.uk/pub/databases/chebi/ontology/. Accessed 8 Aug 2018

    Google Scholar 

  23. link2OtherDBs_basedOnUniChem of NikkajiRDF. http://doi.org/10.18908/lsdba.nbdc01530–02-006. Accessed 8 Aug 2018

  24. SPARQL query result in Section 3.1. http://nikkaji-rdf.biosciencedbc.jp/download/quary24/chebi2nikkajiRDF/0,5000.html. Accessed 8 Aug 2018

  25. Ghazvinian, A., Noy, N.F., Musen, M.A.: Creating mappings for ontologies in biomedicine: simple methods work. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association, pp. 198–202 (2009)

    Google Scholar 

  26. SPARQL query result in Section 3.2. http://nikkaji-rdf.biosciencedbc.jp/download/quary25/reasoning_Inheritance/.html. Accessed 8 Aug 2018

  27. Kushida, T., et al.: Refined JST thesaurus extended with data from other open life science data sources. In: Wang, Z., Turhan, A.-Y., Wang, K., Zhang, X. (eds.) JIST 2017. LNCS, vol. 10675, pp. 35–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70682-5_3

    Chapter  Google Scholar 

  28. Kushida, T., et al.: Refining JST thesaurus and discussing the effectiveness in life science research. In: Proceedings of 5th Intelligent Exploration of Semantic Data Workshop (IESD 2016, Co-located with ISWC 2016), pp. 1–14, Kobe (2016)

    Google Scholar 

  29. SPARQL query result in Section 3.3. http://nikkaji-rdf.biosciencedbc.jp/download/quary26/reasoning_knowledgeGraph/.html. Accessed 8 Aug 2018

  30. Bodenreider, O., Nelson, S.J., Hole, W.T., Chang, H.F.: Beyond synonymy: exploiting the UMLS semantics in mapping vocabularies. In: Proceedings of AMIA Symposium, pp. 815–819 (1998)

    Google Scholar 

  31. Chepelev, L.L., Dumontier, M.: Semantic web integration of cheminformatics resources with the SADI framework. J. Cheminform. 3(1), 16 (2011)

    Article  Google Scholar 

  32. Alshahrani, M., Khan, M.A., Maddouri, O., Kinjo, A.R., Queralt-Rosinach, N., Hoehndorf, R.: Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33(17), 2723–2730 (2017)

    Article  Google Scholar 

  33. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by an operating grant from the Japan Science and Technology Agency and JSPS KAKENHI Grant Number JP17H01789. A part of this study was progressed and discussed in Japan BioHackathon 2016 (BH16.12), which served as a research and development meeting. We are grateful to all participants who gave us their valuable advice and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Kushida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kushida, T., Kozaki, K., Kawamura, T., Tateisi, Y., Yamamoto, Y., Takagi, T. (2018). Inference of Functions, Roles, and Applications of Chemicals Using Linked Open Data and Ontologies. In: Ichise, R., Lecue, F., Kawamura, T., Zhao, D., Muggleton, S., Kozaki, K. (eds) Semantic Technology. JIST 2018. Lecture Notes in Computer Science(), vol 11341. Springer, Cham. https://doi.org/10.1007/978-3-030-04284-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04284-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04283-7

  • Online ISBN: 978-3-030-04284-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics