Skip to main content

RE-CNN: A Robust Convolutional Neural Networks for Image Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

Abstract

Recent years we have witnessed revolutionary changes, essentially caused by deep learning and Convolutional Neural Networks (CNN). The performance of image recognition by convolutional neural networks has been substantially boosted. Despite the greater success, the selection of the convolution kernel and the strategy of the pooling layer that only consider the local region and ignore the global region remain several major challenges. These problems may lead to a high correlation between the extracted features and the appearance of the over-fitting. To address the problem, in this paper, a novel and robust method to learn a removal correlation CNN (RE-CNN) model is proposed. This model is achieved by introducing and learning removal correlation layers on the basis of the existing high-capacity CNN architectures. Specifically, the removal correlation layer is trained by the reconstructed CNN features (in this paper, the CNN features are outputs of the layer before classifier layer) using canonical correlation analysis (CCA). The original CNN features are projected into a subspace where the reconstructed CNN features are not correlated. Our extensive experiments on MNIST and LFW datasets demonstrate that the proposed RE-CNN model can improve the recognition capabilities of many existing high-capacity CNN architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Appl. Mech. Mater. 263(5), 2829–2833 (2010)

    MATH  Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  3. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  4. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  5. Lecun, Y.: Gradient-based learning applied to document recognition. Intelligent Signal Processing pp. 306–351 (2001)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  7. Juefei-Xu, F., Boddeti, V.N., Savvides, M.: Local binary convolutional neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4284–4293 (2017)

    Google Scholar 

  8. Hardoon, D.R., Szedmak, S.R., Shawe-taylor, J.R.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    Article  Google Scholar 

  9. Andrew, G., Arora, R., Bilmes, J.A., Livescu, K.: Deep canonical correlation analysis. In: Proceedings of The 30th International Conference on Machine Learning, pp. 1247–1255 (2013)

    Google Scholar 

  10. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    Article  Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Cheng, G., Zhou, P., Han, J.: RIFD-CNN: rotation-invariant and fisher discriminative convolutional neural networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2884–2893 (2016)

    Google Scholar 

  13. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2008)

    Google Scholar 

  14. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  15. Hu, J., Lu, J., Yuan, J., Tan, Y.-P.: Large margin multi-metric learning for face and kinship verification in the wild. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 252–267. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16811-1_17

    Chapter  Google Scholar 

  16. Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse convolutional neural networks. In: Computer Vision and Pattern Recognition, pp. 806–814 (2015)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  18. Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.): ICANN 2016. LNCS, vol. 9887. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhuan Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Lu, W., He, Y., Xiong, N., Wei, J. (2018). RE-CNN: A Robust Convolutional Neural Networks for Image Recognition. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics