Skip to main content

The Role of the Human Virome in Hematologic Malignancies

  • Chapter
  • First Online:
Microbiome and Cancer

Abstract

The focus of this Chapter will be on the viruses that can persistently infect humans becoming permanent members of the human virome. These viruses include Epstein-Barr virus (EBV), Kaposi’s sarcoma herpes virus (KSHV), hepatitis C virus (HCV) and human T-cell leukemia virus (HTLV)-1. EBV, KSHV and HTLV-1 establish latent infections in lymphocytes that cannot be eradicated while HCV leads to chronic infection that can be ultimately cured with anti-viral drugs. The hematologic malignancies associated with these viral infections include B, T and natural killer (NK) cell lymphomas and adult-T cell leukemia. A challenge in understanding the etiology of the viral-associated hematologic malignancies is the relative ubiquity of the viruses within the human population in contrast to the rarity of the associated malignancies. Nonetheless, it is clear that these members of our human virome contribute to a substantial burden of hematologic malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Young LS, Yao QY, Rooney CM, Sculley TB, Moss DJ, Rupani H et al (1987) New type B isolates of Epstein-Barr virus from Burkitt's lymphoma and from normal individuals in endemic areas. J Gen Virol 68. (Pt 11:2853–2862

    Article  CAS  PubMed  Google Scholar 

  3. Palser AL, Grayson NE, White RE, Corton C, Correia S, Ba Abdullah MM, et al. Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J Virol 2015;89(10):5222–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sixbey JW, Shirley P, Chesney PJ, Buntin DM, Resnick L (1989) Detection of a second widespread strain of Epstein-Barr virus. Lancet 2:761–765

    Article  CAS  PubMed  Google Scholar 

  5. de The G (1982) Epidemiology of Epstein-Barr virus and associated diseases in man. In: Roizman B (ed) The Herpesviruses, vol 1. Plenum Press, pp 25–103

    Google Scholar 

  6. Rochford R (2008) Epidemiology of EBV. In: Damania B, Pipas J (eds) DNA tumor viruses. Springer, New York, NY

    Google Scholar 

  7. Henle G, Henle W (1970) Observations on childhood infections with the Epstein-Barr virus. J Infect Dis 121(3):303–310

    Article  CAS  PubMed  Google Scholar 

  8. Biggar RJ, Henle G, Bocker J, Lennette ET, Fleisher G, Henle W (1978) Primary Epstein-Barr virus infections in African infants. II. Clinical and serological observations during seroconversion. Int J Cancer 22(3):244–250

    Article  CAS  PubMed  Google Scholar 

  9. Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R, Newton D et al (2005) Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis 191(8):1233–1238

    Article  PubMed  Google Scholar 

  10. Piriou E, Asito AS, Sumba PO, Fiore N, Middeldorp JM, Moormann AM et al (2012) Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis 205(6):906–913

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miyashita EM, Yang B, Lam KMC, Crawford DH, Thorley-Lawson DA (1995) A novel form of Epstein-Barr virus latency in normal B cells in vivo. Cell 80:593–601

    Article  CAS  PubMed  Google Scholar 

  12. Coleman CB, Daud II, Ogolla SO, Ritchie JA, Smith NA, Sumba PO et al (2017) Epstein-Barr virus type 2 infects T cells in healthy Kenyan children. J Infect Dis 216(6):670–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rickinson AB, Moss DJ (1983) Epstein-Barr virus-induced transformation: immunological aspects. Adv Viral Oncol 3:213–238

    Google Scholar 

  14. Wang F, Tsang SF, Kurilla MG, Cohen JI, Kieff E (1990) Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64:3407–3416

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Alfieri C, Birkenbach M, Kieff E (1991) Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181:595–608

    Article  CAS  PubMed  Google Scholar 

  16. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350(13):1328–1337

    Article  CAS  PubMed  Google Scholar 

  17. Shannon-Lowe C, Rickinson AB, Bell AI (2017) Epstein-Barr virus-associated lymphomas. Philos Trans R Soc Lond Ser B Biol Sci 372(1732)

    Article  CAS  Google Scholar 

  18. Xue SA, Labrecque LG, Lu QL, Ong SK, Lampert IA, Kazembe P et al (2002) Promiscuous expression of Epstein-Barr virus genes in Burkitt’s lymphoma from the central African country Malawi. Int J Cancer 99(5):635–643

    Article  CAS  PubMed  Google Scholar 

  19. Ma SD, Hegde S, Young KH, Sullivan R, Rajesh D, Zhou Y et al (2011) A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas. J Virol 85(1):165–177

    Article  CAS  PubMed  Google Scholar 

  20. Moss WN, Lee N, Pimienta G, Steitz JA (2014) RNA families in Epstein-Barr virus. RNA Biol 11(1):10–17

    Article  CAS  PubMed  Google Scholar 

  21. Randhawa PS, Demetris J, Nalesnik MA (1994) EBER gene expression in Epstein-Barr virus-associated hematopoietic neoplasms. Leuk Lymphoma 13(5–6):387–392

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto N, Takizawa T, Iwanaga Y, Shimizu N, Yamamoto N (2000) Malignant transformation of B lymphoma cell line BJAB by Epstein-Barr virus-encoded small RNAs. FEBS Lett 484(2):153–158

    Article  CAS  PubMed  Google Scholar 

  23. Yajima M, Kanda T, Takada K (2005) Critical role of Epstein-Barr virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol 79(7):4298–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. IARC (1997) Epstein-Barr virus. Monogr Eval Carcinog Risks Hum 70:47–373

    Google Scholar 

  25. Gru AA, Haverkos BH, Freud AG, Hastings J, Nowacki NB, Barrionuevo C et al (2015) The Epstein-Barr virus (EBV) in T cell and NK cell lymphomas: time for a reassessment. Curr Hematol Malig Rep 10(4):456–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burkitt DP (1971) Epidemiology of Burkitt’s lymphoma. Proc R Soc Med 64(9):909–910

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morrow RH, Gutensohn N, Smith PG (1976) Epstein-Barr virus-malaria interaction models for Burkitt’s lymphoma: implications for preventive trials. Cancer Res 36(2 pt 2):667–669

    CAS  PubMed  Google Scholar 

  28. Haverkos BM, Pan Z, Gru AA, Freud AG, Rabinovitch R, Xu-Welliver M et al (2016) Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT): an update on epidemiology, clinical presentation, and natural history in North American and European cases. Curr Hematol Malig Rep 11(6):514–527

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kang MS, Kieff E (2015) Epstein-Barr virus latent genes. Exp Mol Med 47:e131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kieser A, Sterz KR (2015) The latent membrane protein 1 (LMP1). Curr Top Microbiol Immunol 391:119–149

    CAS  PubMed  Google Scholar 

  31. Kempkes B, Ling PD (2015) EBNA2 and its coactivator EBNA-LP. Curr Top Microbiol Immunol 391:35–59

    CAS  PubMed  Google Scholar 

  32. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266(5192):1865–1869

    Article  CAS  PubMed  Google Scholar 

  33. Mayama S, Cuevas LE, Sheldon J, Omar OH, Smith DH, Okong P et al (1998) Prevalence and transmission of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in Ugandan children and adolescents. Int J Cancer 77(6):817–820

    Article  CAS  PubMed  Google Scholar 

  34. Ambroziak JA, Blackbourn DJ, Herndier BG, Glogau RG, Gullett JH, McDonald AR et al (1995) Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science 268(5210):582–583

    Article  CAS  PubMed  Google Scholar 

  35. Cook-Mozaffari P, Newton R, Beral V, Burkitt DP (1998) The geographical distribution of Kaposi’s sarcoma and of lymphomas in Africa before the AIDS epidemic. Br J Cancer 78(11):1521–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dedicoat M, Newton R (2003) Review of the distribution of Kaposi’s sarcoma-associated herpesvirus (KSHV) in Africa in relation to the incidence of Kaposi’s sarcoma. Br J Cancer 88(1):1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chatlynne LG, Ablashi DV (1999) Seroepidemiology of Kaposi’s sarcoma-associated herpesvirus (KSHV). Semin Cancer Biol 9(3):175–185

    Article  CAS  PubMed  Google Scholar 

  38. Newton R, Labo N, Wakeham K, Miley W, Asiki G, Johnston WT et al (2017) Kaposi’s sarcoma associated herpesvirus in a rural Ugandan cohort: 1992–2008. J Infect Dis 217(2):263–269

    Article  PubMed Central  Google Scholar 

  39. Minhas V, Crabtree KL, Chao A, M'Soka TJ, Kankasa C, Bulterys M et al (2008) Early childhood infection by human herpesvirus 8 in Zambia and the role of human immunodeficiency virus type 1 coinfection in a highly endemic area. Am J Epidemiol 168(3):311–320

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gnann JW Jr, Pellett PE, Jaffe HW (2000) Human herpesvirus 8 and Kaposi’s sarcoma in persons infected with human immunodeficiency virus. Clin Infect Dis 30(Suppl 1):S72–S76

    Article  PubMed  Google Scholar 

  41. Bagni R, Whitby D (2009) Kaposi’s sarcoma-associated herpesvirus transmission and primary infection. Curr Opin HIV AIDS 4(1):22–26

    Article  PubMed  Google Scholar 

  42. Dissinger NJ, Damania B (2016) Recent advances in understanding Kaposi’s sarcoma-associated herpesvirus. F1000Res 5

    Google Scholar 

  43. Whitby D, Howard MR, Tenant-Flowers M, Brink NS, Copas A, Boshoff C et al (1995) Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi’s sarcoma. Lancet 346(8978):799–802

    Article  CAS  PubMed  Google Scholar 

  44. Mesri EA, Cesarman E, Arvanitakis L, Rafii S, Moore MAS, Posnett DN et al (1996) Human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus is a new transmissible virus that infects b cells. J Exp Med 183:2385–2390

    Article  CAS  PubMed  Google Scholar 

  45. Rappocciolo G, Hensler HR, Jais M, Reinhart TA, Pegu A, Jenkins FJ et al (2008) Human herpesvirus 8 infects and replicates in primary cultures of activated B lymphocytes through DC-SIGN. J Virol 82(10):4793–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hassman LM, Ellison TJ, Kedes DH (2011) KSHV infects a subset of human tonsillar B cells, driving proliferation and plasmablast differentiation. J Clin Invest 121(2):752–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cesarman E (2014) How do viruses trick B cells into becoming lymphomas? Curr Opin Hematol 21(4):358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carbone A, Cilia AM, Gloghini A, Capello D, Perin T, Bontempo D et al (2000) Primary effusion lymphoma cell lines harbouring human herpesvirus type-8. Leuk Lymphoma 36(5–6):447–456

    Article  CAS  PubMed  Google Scholar 

  49. Fassone L, Bhatia K, Gutierrez M, Capello D, Gloghini A, Dolcetti R et al (2000) Molecular profile of Epstein-Barr virus infection in HHV-8-positive primary effusion lymphoma. Leukemia 14(2):271–277

    Article  CAS  PubMed  Google Scholar 

  50. Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R (2015) Kaposi sarcoma-associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. Semin Oncol 42(2):223–246

    Article  PubMed  Google Scholar 

  51. Dupin N, Diss TL, Kellam P, Tulliez M, Du MQ, Sicard D et al (2000) HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8-positive plasmablastic lymphoma. Blood 95(4):1406–1412

    CAS  PubMed  Google Scholar 

  52. Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, Moore PS et al (2000) Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Am J Pathol 156(3):743–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES (2014) KSHV LANA—the master regulator of KSHV latency. Viruses 6(12):4961–4998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fakhari FD, Jeong JH, Kanan Y, Dittmer DP (2006) The latency-associated nuclear antigen of Kaposi sarcoma-associated herpesvirus induces B cell hyperplasia and lymphoma. J Clin Invest 116(3):735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cesarman E, Nador RG, Bai F, Bohenzky RA, Russo JJ, Moore PS et al (1996) Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J Virol 70(11):8218–8223

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ballon G, Chen K, Perez R, Tam W, Cesarman E (2011) Kaposi sarcoma herpesvirus (KSHV) vFLIP oncoprotein induces B cell transdifferentiation and tumorigenesis in mice. J Clin Invest 121(3):1141–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verschuren EW, Hodgson JG, Gray JW, Kogan S, Jones N, Evan GI (2004) The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res 64(2):581–589

    Article  CAS  PubMed  Google Scholar 

  58. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M (1989) Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244(4902):359–362

    Article  CAS  PubMed  Google Scholar 

  59. Scheel TK, Rice CM (2013) Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19(7):837–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hoffman B, Liu Q (2011) Hepatitis C viral protein translation: mechanisms and implications in developing antivirals. Liver Int 31(10):1449–1467

    Article  CAS  PubMed  Google Scholar 

  61. Gottwein JM, Bukh J (2008) Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 71:51–133

    Article  CAS  PubMed  Google Scholar 

  62. Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H (2014) Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol 61(1 Suppl):S45–S57

    Article  PubMed  Google Scholar 

  63. Mavilia MG, Wu GY (2017) Mechanisms and prevention of vertical transmission in chronic viral hepatitis. J Clin Transl Hepatol 5(2):119–129

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lanini S, Easterbrook PJ, Zumla A, Ippolito G (2016) Hepatitis C: global epidemiology and strategies for control. Clin Microbiol Infect 22(10):833–838

    Article  CAS  PubMed  Google Scholar 

  65. Farci P, Shimoda A, Coiana A, Diaz G, Peddis G, Melpolder JC et al (2000) The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288(5464):339–344

    Article  CAS  PubMed  Google Scholar 

  66. Muratori L, Gibellini D, Lenzi M, Cataleta M, Muratori P, Morelli MC et al (1996) Quantification of hepatitis C virus-infected peripheral blood mononuclear cells by in situ reverse transcriptase-polymerase chain reaction. Blood 88(7):2768–2774

    CAS  PubMed  Google Scholar 

  67. Willems M, Peerlinck K, Moshage H, Deleu I, Van den Eynde C, Vermylen J et al (1994) Hepatitis C virus-RNAs in plasma and in peripheral blood mononuclear cells of hemophiliacs with chronic hepatitis C: evidence for viral replication in peripheral blood mononuclear cells. J Med Virol 42(3):272–278

    Article  CAS  PubMed  Google Scholar 

  68. Marukian S, Jones CT, Andrus L, Evans MJ, Ritola KD, Charles ED et al (2008) Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 48(6):1843–1850

    Article  PubMed  Google Scholar 

  69. Stamataki Z, Shannon-Lowe C, Shaw J, Mutimer D, Rickinson AB, Gordon J et al (2009) Hepatitis C virus association with peripheral blood B lymphocytes potentiates viral infection of liver-derived hepatoma cells. Blood 113(3):585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Douam F, Bobay LM, Maurin G, Fresquet J, Calland N, Maisse C et al (2015) Specialization of hepatitis C virus envelope glycoproteins for B lymphocytes in chronically infected patients. J Virol 90(2):992–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Chen CL, Huang JY, Wang CH, Tahara SM, Zhou L, Kondo Y et al (2017) Hepatitis C virus has a genetically determined lymphotropism through co-receptor B7.2. Nat Commun 8:13882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nieters A, Kallinowski B, Brennan P, Ott M, Maynadie M, Benavente Y et al (2006) Hepatitis C and risk of lymphoma: results of the European multicenter case-control study EPILYMPH. Gastroenterology 131(6):1879–1886

    Article  CAS  PubMed  Google Scholar 

  73. de Sanjose S, Benavente Y, Vajdic CM, Engels EA, Morton LM, Bracci PM et al (2008) Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol 6(4):451–458

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pozzato G, Mazzaro C, Crovatto M, Modolo ML, Ceselli S, Mazzi G et al (1994) Low-grade malignant lymphoma, hepatitis C virus infection, and mixed cryoglobulinemia. Blood 84(9):3047–3053

    CAS  PubMed  Google Scholar 

  75. Anderson LA, Pfeiffer R, Warren JL, Landgren O, Gadalla S, Berndt SI et al (2008) Hematopoietic malignancies associated with viral and alcoholic hepatitis. Cancer Epidemiol Biomark Prev 17(11):3069–3075

    Article  Google Scholar 

  76. Dal Maso L, Franceschi S (2006) Hepatitis C virus and risk of lymphoma and other lymphoid neoplasms: a meta-analysis of epidemiologic studies. Cancer Epidemiol Biomark Prev 15(11):2078–2085

    Article  CAS  Google Scholar 

  77. Hermine O, Lefrere F, Bronowicki JP, Mariette X, Jondeau K, Eclache-Saudreau V et al (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347(2):89–94

    Article  CAS  PubMed  Google Scholar 

  78. Mele A, Pulsoni A, Bianco E, Musto P, Szklo A, Sanpaolo MG et al (2003) Hepatitis C virus and B-cell non-Hodgkin lymphomas: an Italian multicenter case-control study. Blood 102(3):996–999

    Article  CAS  PubMed  Google Scholar 

  79. Besson C, Canioni D, Lepage E, Pol S, Morel P, Lederlin P et al (2006) Characteristics and outcome of diffuse large B-cell lymphoma in hepatitis C virus-positive patients in LNH 93 and LNH 98 Groupe d’Etude des Lymphomes de l’Adulte programs. J Clin Oncol 24(6):953–960

    Article  PubMed  Google Scholar 

  80. Kelaidi C, Rollot F, Park S, Tulliez M, Christoforov B, Calmus Y et al (2004) Response to antiviral treatment in hepatitis C virus-associated marginal zone lymphomas. Leukemia 18(10):1711–1716

    Article  CAS  PubMed  Google Scholar 

  81. Peveling-Oberhag J, Arcaini L, Bankov K, Zeuzem S, Herrmann E (2016) The anti-lymphoma activity of antiviral therapy in HCV-associated B-cell non-Hodgkin lymphomas: a meta-analysis. J Viral Hepat 23(7):536–544

    Article  CAS  PubMed  Google Scholar 

  82. Vallisa D, Bernuzzi P, Arcaini L, Sacchi S, Callea V, Marasca R et al (2005) Role of anti-hepatitis C virus (HCV) treatment in HCV-related, low-grade, B-cell, non-Hodgkin’s lymphoma: a multicenter Italian experience. J Clin Oncol 23(3):468–473

    Article  CAS  PubMed  Google Scholar 

  83. Marcucci F, Mele A (2011) Hepatitis viruses and non-Hodgkin lymphoma: epidemiology, mechanisms of tumorigenesis, and therapeutic opportunities. Blood 117(6):1792–1798

    Article  CAS  PubMed  Google Scholar 

  84. Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S et al (2003) Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 278(43):41624–41630

    Article  CAS  PubMed  Google Scholar 

  85. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77(12):7415–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Okochi K, Sato H, Hinuma Y (1984) A retrospective study on transmission of adult T cell leukemia virus by blood transfusion: seroconversion in recipients. Vox Sang 46(5):245–253

    Article  CAS  PubMed  Google Scholar 

  87. Roucoux DF, Wang B, Smith D, Nass CC, Smith J, Hutching ST et al (2005) A prospective study of sexual transmission of human T lymphotropic virus (HTLV)-I and HTLV-II. J Infect Dis 191(9):1490–1497

    Article  PubMed  Google Scholar 

  88. Kajiyama W, Kashiwagi S, Ikematsu H, Hayashi J, Nomura H, Okochi K (1986) Intrafamilial transmission of adult T cell leukemia virus. J Infect Dis 154(5):851–857

    Article  CAS  PubMed  Google Scholar 

  89. Boxus M, Willems L (2009) Mechanisms of HTLV-1 persistence and transformation. Br J Cancer 101(9):1497–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gessain A, Cassar O (2012) Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol 3:388

    Article  PubMed  PubMed Central  Google Scholar 

  91. Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL (2005) Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24(39):6058–6068

    Article  CAS  PubMed  Google Scholar 

  92. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H (1977) Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood 50(3):481–492

    CAS  PubMed  Google Scholar 

  93. Iwanaga M, Watanabe T, Utsunomiya A, Okayama A, Uchimaru K, Koh KR et al (2010) Human T-cell leukemia virus type I (HTLV-1) proviral load and disease progression in asymptomatic HTLV-1 carriers: a nationwide prospective study in Japan. Blood 116(8):1211–1219

    Article  CAS  PubMed  Google Scholar 

  94. Shimoyama M (1991) Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haematol 79(3):428–437

    Article  CAS  PubMed  Google Scholar 

  95. Matsuoka M, Jeang KT (2005) Human T-cell leukemia virus type I at age 25: a progress report. Cancer Res 65(11):4467–4470

    Article  CAS  PubMed  Google Scholar 

  96. Matsuoka M, Jeang KT (2011) Human T-cell leukemia virus type 1 (HTLV-1) and leukemic transformation: viral infectivity, Tax, HBZ and therapy. Oncogene 30(12):1379–1389

    Article  CAS  PubMed  Google Scholar 

  97. Satou Y, Yasunaga J, Yoshida M, Matsuoka M (2006) HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci U S A 103(3):720–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grassmann R, Aboud M, Jeang KT (2005) Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24(39):5976–5985

    Article  CAS  PubMed  Google Scholar 

  99. Grassmann R, Dengler C, Muller-Fleckenstein I, Fleckenstein B, McGuire K, Dokhelar MC et al (1989) Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a herpesvirus saimiri vector. Proc Natl Acad Sci U S A 86(9):3351–3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Akagi T, Ono H, Shimotohno K (1995) Characterization of T cells immortalized by Tax1 of human T-cell leukemia virus type 1. Blood 86(11):4243–4249

    CAS  PubMed  Google Scholar 

  101. Slyker JA, Casper C, Tapia K, Richardson B, Bunts L, Huang ML et al (2013) Clinical and virologic manifestations of primary Epstein-Barr virus (EBV) infection in Kenyan infants born to HIV-infected women. J Infect Dis 207(12):1798–1806

    Article  PubMed  PubMed Central  Google Scholar 

  102. de-The G (1977) Is Burkitt’s lymphoma related to perinatal infection by Epstein-Barr virus? Lancet 1(8007):335–338

    Article  CAS  PubMed  Google Scholar 

  103. Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K et al (1989) Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med 320(11):689–695

    Article  CAS  PubMed  Google Scholar 

  104. De The G (1980) Role of Epstein-Barr virus in human diseases: infectious mononucleosis, Burkitt’s lymphoma and nasopharyngeal carcinoma. In: Klein G (ed) Viral oncology. Raven Press, New York, NY, pp 769–798

    Google Scholar 

  105. Bartholomew C, Jack N, Edwards J, Charles W, Corbin D, Cleghorn FR et al (1998) HTLV-I serostatus of mothers of patients with adult T-cell leukemia and HTLV-I-associated myelopathy/tropical spastic paraparesis. J Hum Virol 1(4):302–305

    CAS  PubMed  Google Scholar 

  106. Iwanaga M, Watanabe T, Yamaguchi K (2012) Adult T-cell leukemia: a review of epidemiological evidence. Front Microbiol 3:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Robbiani DF, Deroubaix S, Feldhahn N, Oliveira TY, Callen E, Wang Q et al (2015) Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell 162(4):727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Torgbor C, Awuah P, Deitsch K, Kalantari P, Duca KA, Thorley-Lawson DA (2014) A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog 10(5):e1004170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Wilmore JR, Asito AS, Wei C, Piriou E, Sumba PO, Sanz I et al (2015) AID expression in peripheral blood of children living in a malaria holoendemic region is associated with changes in B cell subsets and Epstein-Barr virus. Int J Cancer 136(6):1371–1380

    Article  CAS  PubMed  Google Scholar 

  110. Epeldegui M, Breen EC, Hung YP, Boscardin WJ, Detels R, Martinez-Maza O (2007) Elevated expression of activation induced cytidine deaminase in peripheral blood mononuclear cells precedes AIDS-NHL diagnosis. AIDS 21(17):2265–2270

    Article  CAS  PubMed  Google Scholar 

  111. Bangham CRM, Matsuoka M (2017) Human T-cell leukaemia virus type 1: parasitism and pathogenesis. Philos Trans R Soc Lond Ser B Biol Sci 372(1732):pii:20160272

    Article  CAS  Google Scholar 

  112. Kahan SM, Wherry EJ, Zajac AJ (2015) T cell exhaustion during persistent viral infections. Virology 479–480:180–193

    Article  PubMed  CAS  Google Scholar 

  113. Rodrigue-Gervais IG, Rigsby H, Jouan L, Sauve D, Sekaly RP, Willems B et al (2010) Dendritic cell inhibition is connected to exhaustion of CD8+ T cell polyfunctionality during chronic hepatitis C virus infection. J Immunol 184(6):3134–3144

    Article  CAS  PubMed  Google Scholar 

  114. Wedemeyer H, He XS, Nascimbeni M, Davis AR, Greenberg HB, Hoofnagle JH et al (2002) Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 169(6):3447–3458

    Article  CAS  PubMed  Google Scholar 

  115. Cohen M, Vistarop AG, Huaman F, Narbaitz M, Metrebian F, De Matteo E et al (2017) Cytotoxic response against Epstein Barr virus coexists with diffuse large B-cell lymphoma tolerogenic microenvironment: clinical features and survival impact. Sci Rep 7(1):10813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kozako T, Arima N, Toji S, Masamoto I, Akimoto M, Hamada H et al (2006) Reduced frequency, diversity, and function of human T cell leukemia virus type 1-specific CD8+ T cell in adult T cell leukemia patients. J Immunol 177(8):5718–5726

    Article  CAS  PubMed  Google Scholar 

  117. Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, Thorley-Lawson DA (2004) Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101(1):239–244

    Article  CAS  PubMed  Google Scholar 

  118. Billman MR, Rueda D, Bangham CRM (2017) Single-cell heterogeneity and cell-cycle-related viral gene bursts in the human leukaemia virus HTLV-1. Wellcome Open Res 2:87

    Article  PubMed  PubMed Central  Google Scholar 

  119. Engels EA, Pfeiffer RM, Fraumeni JF Jr, Kasiske BL, Israni AK, Snyder JJ et al (2011) Spectrum of cancer risk among US solid organ transplant recipients. JAMA 306(17):1891–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370(9581):59–67

    Article  PubMed  Google Scholar 

  121. Rasche L, Kapp M, Einsele H, Mielke S (2014) EBV-induced post transplant lymphoproliferative disorders: a persisting challenge in allogeneic hematopoietic SCT. Bone Marrow Transplant 49(2):163–167

    Article  CAS  PubMed  Google Scholar 

  122. Zignego AL, Ferri C, Giannini C, La Civita L, Careccia G, Longombardo G et al (1997) Hepatitis C virus infection in mixed cryoglobulinemia and B-cell non-Hodgkin’s lymphoma: evidence for a pathogenetic role. Arch Virol 142(3):545–555

    Article  CAS  PubMed  Google Scholar 

  123. Quinlan SC, Pfeiffer RM, Morton LM, Engels EA (2011) Risk factors for early-onset and late-onset post-transplant lymphoproliferative disorder in kidney recipients in the United States. Am J Hematol 86(2):206–209

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rochford R, Cannon MJ, Moormann AM. Endemic Burkitt's lymphoma: a polymicrobial disease? Nat Rev Microbiol 2005;3:182–187

    Article  CAS  PubMed  Google Scholar 

  125. Sugawara Y, Makuuchi M, Kato N, Shimotohno K, Takada K (1999) Enhancement of hepatitis C virus replication by Epstein-Barr virus-encoded nuclear antigen 1. EMBO J 18(20):5755–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary Rochford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rochford, R., Coleman, C.B., Haverkos, B. (2019). The Role of the Human Virome in Hematologic Malignancies. In: Robertson, E. (eds) Microbiome and Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-030-04155-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04155-7_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-04154-0

  • Online ISBN: 978-3-030-04155-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics