Skip to main content

Infection Based Gastric Cancer

  • Chapter
  • First Online:
Microbiome and Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 1204 Accesses

Abstract

Gastric cancer is one of the leading causes of cancer-related death in the world. Helicobacter pylori is currently the strongest known risk factor for this disease and is classified as a type I carcinogen by the World Health Organization. Many factors play a role in the progression towards gastric cancer including, but not limited to, bacterial virulence factors, host genetics, diet, and the gastric microbiota. The stomach, once thought to be a sterile environment, is now known to host a rich microbiota, which is unique to each individual. A complex interplay exists between H. pylori and the gastric microbiota which may one day become a target for personalized medicine to attenuate the progression towards gastric cancer. In this chapter, we discuss how the infectious bacterium, H. pylori, interacts with its host to augment the risk of developing gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615

    Article  PubMed  Google Scholar 

  2. Kumar P, Murphy FA (2013) Who is this man? Francis Peyton Rous. Emerg Infect Dis 19:661–663

    Article  PubMed  Google Scholar 

  3. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L et al (2009) A review of human carcinogens—part B: biological agents. Lancet Oncol 10:321–322

    Article  PubMed  Google Scholar 

  4. Plummer M, Franceschi S, Vignat J, Forman D, de Martel C (2014) Global burden of gastric cancer attributable to pylori. Int J Cancer 136(2):487–490

    Article  PubMed  CAS  Google Scholar 

  5. Correa P (2004) Is gastric cancer preventable? Gut 53:1217–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fuchs CS, Mayer RJ (1995) Gastric carcinoma. N Engl J Med 333:32–41

    Article  CAS  PubMed  Google Scholar 

  7. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  8. Howson CP, Hiyama T, Wynder EL (1986) The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev 8:1–27

    Article  CAS  PubMed  Google Scholar 

  9. Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2:533–543

    Article  CAS  PubMed  Google Scholar 

  10. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF Jr (1991) Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 265:1287–1289

    Article  CAS  PubMed  Google Scholar 

  11. Pera M, Cameron AJ, Trastek VF, Carpenter HA, Zinsmeister AR (1993) Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. Gastroenterology 104:510–513

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research, N (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209

    Article  CAS  Google Scholar 

  13. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process—first American Cancer Society Award lecture on cancer epidemiology and prevention. Cancer Res 52:6735–6740

    CAS  PubMed  Google Scholar 

  14. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789

    Article  CAS  PubMed  Google Scholar 

  15. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N et al (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404:398–402

    Article  CAS  PubMed  Google Scholar 

  16. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R, Capelinha AF, Quint W, Caldas C, van Doorn LJ et al (2002) Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 94:1680–1687

    Article  CAS  PubMed  Google Scholar 

  17. El-Omar EM, Rabkin CS, Gammon MD, Vaughan TL, Risch HA, Schoenberg JB, Stanford JL, Mayne ST, Goedert J, Blot WJ et al (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124:1193–1201

    Article  CAS  PubMed  Google Scholar 

  18. Epplein M, Nomura AM, Hankin JH, Blaser MJ, Perez-Perez G, Stemmermann GN, Wilkens LR, Kolonel LN (2008) Association of Helicobacter pylori infection and diet on the risk of gastric cancer: a case-control study in Hawaii. Cancer Causes Control 19:869–877

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez CA, Jakszyn P, Pera G, Agudo A, Bingham S, Palli D, Ferrari P, Boeing H, del Giudice G, Plebani M et al (2006) Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 98:345–354

    Article  PubMed  Google Scholar 

  20. Gonzalez CA, Lujan-Barroso L, Bueno-de-Mesquita HB, Jenab M, Duell EJ, Agudo A, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Touillaud M et al (2012) Fruit and vegetable intake and the risk of gastric adenocarcinoma: a reanalysis of the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study after a longer follow-up. Int J Cancer 131:2910–2919

    Article  CAS  PubMed  Google Scholar 

  21. Kim HJ, Lim SY, Lee JS, Park S, Shin A, Choi BY, Shimazu T, Inoue M, Tsugane S, Kim J (2010) Fresh and pickled vegetable consumption and gastric cancer in Japanese and Korean populations: a meta-analysis of observational studies. Cancer Sci 101:508–516

    Article  CAS  PubMed  Google Scholar 

  22. Kim MK, Sasaki S, Sasazuki S, Tsugane S, Japan Public Health Center-Based Prospective Study, G (2004) Prospective study of three major dietary patterns and risk of gastric cancer in Japan. Int J Cancer 110:435–442

    Article  CAS  PubMed  Google Scholar 

  23. Ren JS, Kamangar F, Forman D, Islami F (2012) Pickled food and risk of gastric cancer—a systematic review and meta-analysis of English and Chinese literature. Cancer Epidemiol Biomarkers Prev 21:905–915

    Article  PubMed  Google Scholar 

  24. Tsugane S, Sasazuki S (2007) Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer 10:75–83

    Article  PubMed  Google Scholar 

  25. Lee SA, Kang D, Shim KN, Choe JW, Hong WS, Choi H (2003) Effect of diet and Helicobacter pylori infection to the risk of early gastric cancer. J Epidemiol 13:162–168

    Article  PubMed  Google Scholar 

  26. Noto JM, Gaddy JA, Lee JY, Piazuelo MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Loh J, Slaughter JC et al (2013) Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest 123:479–492

    Article  CAS  PubMed  Google Scholar 

  27. Shikata K, Kiyohara Y, Kubo M, Yonemoto K, Ninomiya T, Shirota T, Tanizaki Y, Doi Y, Tanaka K, Oishi Y et al (2006) A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: the Hisayama study. Int J Cancer 119:196–201

    Article  CAS  PubMed  Google Scholar 

  28. Gancz H, Jones KR, Merrell DS (2008) Sodium chloride affects Helicobacter pylori growth and gene expression. J Bacteriol 190:4100–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loh JT, Friedman DB, Piazuelo MB, Bravo LE, Wilson KT, Peek RM Jr, Correa P, Cover TL (2012) Analysis of Helicobacter pylori cagA promoter elements required for salt-induced upregulation of CagA expression. Infect Immun 80:3094–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loh JT, Torres VJ, Cover TL (2007) Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res 67:4709–4715

    Article  CAS  PubMed  Google Scholar 

  31. Wroblewski LE, Peek RM Jr, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23:713–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Linz B, Balloux F, Moodley Y, Manica A, Liu H, Roumagnac P, Falush D, Stamer C, Prugnolle F, van der Merwe SW et al (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445:915–918

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fischer W, Puls J, Buhrdorf R, Gebert B, Odenbreit S, Haas R (2001) Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42:1337–1348

    Article  CAS  PubMed  Google Scholar 

  34. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, Konig W et al (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449:862–866

    Article  CAS  PubMed  Google Scholar 

  35. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:1497–1500

    Article  CAS  PubMed  Google Scholar 

  36. Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL (2011) Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog 7:e1002237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang JQ, Zheng GF, Sumanac K, Irvine EJ, Hunt RH (2003) Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 125:1636–1644

    Article  PubMed  Google Scholar 

  38. Parsonnet J, Friedman GD, Orentreich N, Vogelman H (1997) Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40:297–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hatakeyama M (2004) Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4:688–694

    Article  CAS  PubMed  Google Scholar 

  40. Higashi H, Yokoyama K, Fujii Y, Ren S, Yuasa H, Saadat I, Murata-Kamiya N, Azuma T, Hatakeyama M (2005) EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem 280:23130–23137

    Article  CAS  PubMed  Google Scholar 

  41. Naito M, Yamazaki T, Tsutsumi R, Higashi H, Onoe K, Yamazaki S, Azuma T, Hatakeyama M (2006) Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 130:1181–1190

    Article  CAS  PubMed  Google Scholar 

  42. Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, Schiavon S, Guariso G, Ceroti M, Nitti D et al (2008) Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 135:91–99

    Article  CAS  PubMed  Google Scholar 

  43. Argent RH, Hale JL, El-Omar EM, Atherton JC (2008) Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between western and East Asian strains, and influences on interleukin-8 secretion. J Med Microbiol 57:1062–1067

    Article  PubMed  Google Scholar 

  44. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S (2003) Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300:1430–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR (2005) Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A 102:16339–16344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M (2003) Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol 161:249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB, Neish AS, Collier-Hyams L, Perez-Perez GI, Hatakeyama M et al (2005) Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A 102:10646–10651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C (2002) Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell 10:745–755

    Article  CAS  PubMed  Google Scholar 

  49. Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T et al (2007) Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26:4617–4626

    Article  CAS  PubMed  Google Scholar 

  50. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A et al (2007) Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447:330–333

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C (2005) Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med 202:1235–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wroblewski LE, Piazuelo MB, Chaturvedi R, Schumacher M, Aihara E, Feng R, Noto JM, Delgado A, Israel DA, Zavros Y et al (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64:720–730

    Article  CAS  PubMed  Google Scholar 

  53. Wroblewski LE, Shen L, Ogden S, Romero-Gallo J, Lapierre LA, Israel DA, Turner JR, Peek RM Jr (2009) Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology 136:236–246

    Article  CAS  PubMed  Google Scholar 

  54. Boquet P, Ricci V (2012) Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol 20:165–174

    Article  CAS  PubMed  Google Scholar 

  55. Cover TL, Blanke SR (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 3:320–332

    Article  CAS  PubMed  Google Scholar 

  56. Atherton JC, Cao P, Peek RM Jr, Tummuru MK, Blaser MJ, Cover TL (1995) Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 270:17771–17777

    Article  CAS  PubMed  Google Scholar 

  57. Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA, Eshagh Hosseini M, Atherton JC (2007) A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 133:926–936

    Article  CAS  PubMed  Google Scholar 

  58. Atherton JC, Peek RM Jr, Tham KT, Cover TL, Blaser MJ (1997) Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112:92–99

    Article  CAS  PubMed  Google Scholar 

  59. Miehlke S, Kirsch C, Agha-Amiri K, Gunther T, Lehn N, Malfertheiner P, Stolte M, Ehninger G, Bayerdorffer E (2000) The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int J Cancer 87:322–327

    Article  CAS  PubMed  Google Scholar 

  60. Memon AA, Hussein NR, Miendje Deyi VY, Burette A, Atherton JC (2014) Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: a matched case/control study. J Clin Microbiol 52(8):2984–2989

    Article  PubMed  PubMed Central  Google Scholar 

  61. Winter JA, Letley DP, Cook KW, Rhead JL, Zaitoun AA, Ingram RJ, Amilon KR, Croxall NJ, Kaye PV, Robinson K et al (2014) A role for the vacuolating cytotoxin, VacA, in colonization and Helicobacter pylori-induced metaplasia in the stomach. J Infect Dis 210(6):954–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Backert S, Tegtmeyer N (2010) The versatility of the Helicobacter pylori vacuolating cytotoxin VacA in signal transduction and molecular crosstalk. Toxins (Basel) 2:69–92

    Article  CAS  Google Scholar 

  63. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M et al (2010) Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36

    Article  CAS  PubMed  Google Scholar 

  64. Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, Hirata K, Nagano O, Matsuzaki J, Hibi T (2012) Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe 12:764–777

    Article  CAS  PubMed  Google Scholar 

  65. Gerhard M, Lehn N, Neumayer N, Boren T, Rad R, Schepp W, Miehlke S, Classen M, Prinz C (1999) Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc Natl Acad Sci U S A 96:12778–12783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Boren T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377

    Article  CAS  PubMed  Google Scholar 

  67. Oliveira AG, Santos A, Guerra JB, Rocha GA, Rocha AM, Oliveira CA, Cabral MM, Nogueira AM, Queiroz DM (2003) babA2- and cagA-positive Helicobacter pylori strains are associated with duodenal ulcer and gastric carcinoma in Brazil. J Clin Microbiol 41:3964–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu J, Leung WK, Go MY, Chan MC, To, K.F, Ng EK, Chan FK, Ling TK, Chung SC, Sung JJ (2002) Relationship between Helicobacter pylori babA2 status with gastric epithelial cell turnover and premalignant gastric lesions. Gut 51:480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Song H, Michel A, Nyren O, Ekstrom AM, Pawlita M, Ye W (2014) A CagA-independent cluster of antigens related to the risk of noncardia gastric cancer: associations between Helicobacter pylori antibodies and gastric adenocarcinoma explored by multiplex serology. Int J Cancer 134:2942–2950

    Article  CAS  PubMed  Google Scholar 

  70. Hennig EE, Mernaugh R, Edl J, Cao P, Cover TL (2004) Heterogeneity among Helicobacter pylori strains in expression of the outer membrane protein BabA. Infect Immun 72:3429–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamaoka Y, Ojo O, Fujimoto S, Odenbreit S, Haas R, Gutierrez O, El-Zimaity HM, Reddy R, Arnqvist A, Graham DY (2006) Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 55:775–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mahdavi J, Sonden B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson KA et al (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Faghihloo E, Saremi MR, Mahabadi M, Akbari H, Saberfar E (2014) Prevalence and characteristics of Epstein-Barr virus-associated gastric cancer in Iran. Arch Iran Med 17:767–770

    PubMed  Google Scholar 

  74. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS (2009) Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology 137:824–833

    Article  PubMed  Google Scholar 

  75. Camargo MC, Kim KM, Matsuo K, Torres J, Liao LM, Morgan DR, Michel A, Waterboer T, Zabaleta J, Dominguez RL et al (2016) Anti-Helicobacter pylori antibody profiles in Epstein-Barr virus (EBV)-positive and EBV-negative gastric cancer. Helicobacter 21:153–157

    Article  CAS  PubMed  Google Scholar 

  76. Cardenas-Mondragon MG, Torres J, Flores-Luna L, Camorlinga-Ponce M, Carreon-Talavera R, Gomez-Delgado A, Kasamatsu E, Fuentes-Panana EM (2015) Case-control study of Epstein-Barr virus and Helicobacter pylori serology in Latin American patients with gastric disease. Br J Cancer 112:1866–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bae JM, Kim EH (2016) Epstein-Barr virus and gastric cancer risk: a meta-analysis with meta-regression of case-control studies. J Prev Med Public Health 49:97–107

    Article  PubMed  PubMed Central  Google Scholar 

  78. Saju P, Murata-Kamiya N, Hayashi T, Senda Y, Nagase L, Noda S, Matsusaka K, Funata S, Kunita A, Urabe M et al (2016) Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat Microbiol 1:16026

    Article  CAS  PubMed  Google Scholar 

  79. Cardenas-Mondragon MG, Torres J, Sanchez-Zauco N, Gomez-Delgado A, Camorlinga-Ponce M, Maldonado-Bernal C, Fuentes-Panana EM (2017) Elevated levels of interferon-gamma are associated with high levels of Epstein-Barr virus reactivation in patients with the intestinal type of gastric cancer. J Immunol Res 2017:7069242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sheh A, Fox JG (2013) The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4:505–531

    Article  PubMed  PubMed Central  Google Scholar 

  81. Abreu MT, Peek RM Jr (2014) Gastrointestinal malignancy and the microbiome. Gastroenterology 146:1534–1546 e1533

    Article  CAS  PubMed  Google Scholar 

  82. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F, Perez-Perez G, Blaser MJ, Relman DA (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 103:732–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, Karaoz U, Contreras M, Blaser MJ, Brodie EL, Dominguez-Bello MG (2011) Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J 5:574–579

    Article  CAS  PubMed  Google Scholar 

  86. Dicksved J, Lindberg M, Rosenquist M, Enroth H, Jansson JK, Engstrand L (2009) Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol 58:509–516

    Article  CAS  PubMed  Google Scholar 

  87. Eun CS, Kim BK, Han DS, Kim SY, Kim KM, Choi BY, Song KS, Kim YS, Kim JF (2014) Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter 19:407–416

    Article  CAS  PubMed  Google Scholar 

  88. Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC, Figueiredo C (2017) Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67(2):226–236

    Article  PubMed  CAS  Google Scholar 

  89. Ma JL, Zhang L, Brown LM, Li JY, Shen L, Pan KF, Liu WD, Hu Y, Han ZX, Crystal-Mansour S et al (2012) Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst 104:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S, Dunning Hotopp JC (2013) Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol 9:e1003107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rolig AS, Cech C, Ahler E, Carter JE, Ottemann KM (2013) The degree of Helicobacter pylori-triggered inflammation is manipulated by preinfection host microbiota. Infect Immun 81:1382–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zavros Y, Rieder G, Ferguson A, Merchant JL (2002) Gastritis and hypergastrinemia due to Acinetobacter lwoffii in mice. Infect Immun 70:2630–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thomson MJ, Pritchard DM, Boxall SA, Abuderman AA, Williams JM, Varro A, Crabtree JE (2012) Gastric Helicobacter infection induces iron deficiency in the INS-GAS mouse. PLoS One 7:e50194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang J, Fan X, Lindholm C, Bennett M, O'Connoll J, Shanahan F, Brooks EG, Reyes VE, Ernst PB (2000) Helicobacter pylori modulates lymphoepithelial cell interactions leading to epithelial cell damage through Fas/Fas ligand interactions. Infect Immun 68:4303–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S et al (2011) Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 140:210–220

    Article  PubMed  Google Scholar 

  96. Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, Ge Z, Wang TC, Fox JG (2014) Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 63:54–63

    Article  CAS  PubMed  Google Scholar 

  97. Ge Z, Feng Y, Muthupalani S, Eurell LL, Taylor NS, Whary MT, Fox JG (2011) Coinfection with enterohepatic Helicobacter species can ameliorate or promote Helicobacter pylori-induced gastric pathology in C57BL/6 mice. Infect Immun 79:3861–3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lemke LB, Ge Z, Whary MT, Feng Y, Rogers AB, Muthupalani S, Fox JG (2009) Concurrent Helicobacter bilis infection in C57BL/6 mice attenuates proinflammatory H. pylori-induced gastric pathology. Infect Immun 77:2147–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Whary MT, Muthupalani S, Ge Z, Feng Y, Lofgren J, Shi HN, Taylor NS, Correa P, Versalovic J, Wang TC et al (2014) Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect 16:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martin ME, Bhatnagar S, George MD, Paster BJ, Canfield DR, Eisen JA, Solnick JV (2013) The impact of Helicobacter pylori infection on the gastric microbiota of the rhesus macaque. PLoS One 8:e76375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zeng M, Mao XH, Li JX, Tong WD, Wang B, Zhang YJ, Guo G, Zhao ZJ, Li L, Wu DL et al (2015) Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386:1457–1464

    Article  CAS  PubMed  Google Scholar 

  102. Vetizou M, Daillere R, Zitvogel L (2017) Gut microbiota and efficacy of cancer therapies. Biol Aujourdhui 211:51–67

    Article  PubMed  Google Scholar 

  103. Contreras AV, Cocom-Chan B, Hernandez-Montes G, Portillo-Bobadilla T, Resendis-Antonio O (2016) Host-microbiome interaction and cancer: potential application in precision medicine. Front Physiol 7:606

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Peek Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wroblewski, L.E., Peek, R.M. (2019). Infection Based Gastric Cancer. In: Robertson, E. (eds) Microbiome and Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-030-04155-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04155-7_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-04154-0

  • Online ISBN: 978-3-030-04155-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics