Skip to main content

Microbiome and Human Malignancies

  • Chapter
  • First Online:
Microbiome and Cancer

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Recent technological advances have revolutionized our current understanding of the role of human microbiota in cancer development. Several high-throughput Next Generation sequencing studies including metagenomics and transcriptomics data, along with microarray-based technologies suggest that dysbiosis in the commensal microbiota can initiate a number of inflammatory syndromes as well as multiple cancers in humans. Immune deregulation by the microbial community is considered one of the major contributing factors for cancer development. In this chapter, we broadly discuss recent developments in understanding the interaction of human microbiome and its contribution to cancer, and the possibilities of future diagnostic, as well as potential for development of targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GLOBOCAN (2012) Estimated cancer incidence mortality and prevalence worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=al

    Google Scholar 

  2. Bhatt AP, Redinbo MR, Bultman SJ (2017) The role of the microbiome in cancer development and therapy. CA Cancer J Clin 67:326–344

    Article  PubMed  PubMed Central  Google Scholar 

  3. Luo GG, Ou JH (2015) Oncogenic viruses and cancer. Virol Sin 30:83–84

    Article  PubMed  PubMed Central  Google Scholar 

  4. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saha A, Kaul R, Murakami M, Robertson ES (2010) Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 10:961–978

    Article  CAS  PubMed  Google Scholar 

  6. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142:1264–1273e1

    Article  PubMed  Google Scholar 

  7. Wakeham K, Kavanagh K (2014) The burden of HPV-associated anogenital cancers. Curr Oncol Rep 16:402

    Article  PubMed  Google Scholar 

  8. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  9. Saha A, Robertson ES (2011) Epstein-Barr virus-associated B-cell lymphomas: pathogenesis and clinical outcomes. Clin Cancer Res 17:3056–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schulz TF (2009) Cancer and viral infections in immunocompromised individuals. Int J Cancer 125:1755–1763

    Article  CAS  PubMed  Google Scholar 

  11. Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G (2017) Microbes and cancer. Annu Rev Immunol 35:199–228

    Article  CAS  PubMed  Google Scholar 

  12. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17:271–285

    Article  CAS  PubMed  Google Scholar 

  13. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tomkovich S, Jobin C (2016) Microbiota and host immune responses: a love-hate relationship. Immunology 147:1–10

    Article  CAS  PubMed  Google Scholar 

  15. Javier RT, Butel JS (2008) The history of tumor virology. Cancer Res 68:7693–7706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marshall BJ (1995) The 1995 Albert Lasker Medical Research Award. Helicobacter pylori. The etiologic agent for peptic ulcer. JAMA 274:1064–1066

    Article  CAS  PubMed  Google Scholar 

  17. Cani PD (2014) Metabolism in 2013: the gut microbiota manages host metabolism. Nat Rev Endocrinol 10:74–76

    Article  PubMed  Google Scholar 

  18. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  19. Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  21. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther PL, Eberl G, Berard M, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Dore J, Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, Claesson MJ, O'Riordain M, Shanahan F, O'Toole PW (2017) Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66:633–643

    Article  CAS  PubMed  Google Scholar 

  23. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, Moris F, Rodrigo L, Mira A, Collado MC (2015) Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol 50:167–179

    Article  CAS  PubMed  Google Scholar 

  25. Cohen RJ, Shannon BA, McNeal JE, Shannon T, Garrett KL (2005) Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol 173:1969–1974

    Article  PubMed  Google Scholar 

  26. Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G (2016) The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 82:5039–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Banerjee S, Peck KN, Feldman MD, Schuster MG, Alwine JC, Robertson ES (2016) Identification of fungal pathogens in a patient with acute myelogenic leukemia using a pathogen detection array technology. Cancer Biol Ther 17:339–345

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee S, Wei Z, Tan F, Peck KN, Shih N, Feldman M, Rebbeck TR, Alwine JC, Robertson ES (2015) Distinct microbiological signatures associated with triple negative breast cancer. Sci Rep 5:15162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Banerjee S, Tian T, Wei Z, Shih N, Feldman MD, Alwine JC, Coukos G, Robertson ES (2017) The ovarian cancer oncobiome. Oncotarget 8:36225–36245

    PubMed  PubMed Central  Google Scholar 

  30. Banerjee J, Mishra N, Dhas Y (2015) Metagenomics: a new horizon in cancer research. Meta Gene 5:84–89

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moorthie S, Mattocks CJ, Wright CF (2011) Review of massively parallel DNA sequencing technologies. HUGO J 5:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, Pelletier E, Bonde I, Nielsen T, Manichanh C, Arumugam M, Batto JM, Quintanilha Dos Santos MB, Blom N, Borruel N, Burgdorf KS, Boumezbeur F, Casellas F, Dore J, Dworzynski P, Guarner F, Hansen T, Hildebrand F, Kaas RS, Kennedy S, Kristiansen K, Kultima JR, Leonard P, Levenez F, Lund O, Moumen B, Le Paslier D, Pons N, Pedersen O, Prifti E, Qin J, Raes J, Sorensen S, Tap J, Tims S, Ussery DW, Yamada T, Renault P, Sicheritz-Ponten T, Bork P, Wang J, Brunak S, Ehrlich SD (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32:822–828

    Article  CAS  PubMed  Google Scholar 

  34. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Jian M, Zhou Y, Li Y, Zhang X, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. HMP Consortium (2012) A framework for human microbiome research. Nature 486:215–221

    Article  CAS  Google Scholar 

  37. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, Giannoukos G, Boylan MR, Ciulla D, Gevers D, Izard J, Garrett WS, Chan AT, Huttenhower C (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A 111:E2329–E2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banerjee S, Tian T, Wei Z, Peck KN, Shih N, Chalian AA, O'Malley BW, Weinstein GS, Feldman MD, Alwine J, Robertson ES (2017) Microbial signatures associated with oropharyngeal and oral squamous cell carcinomas. Sci Rep 7:4036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Donohoe DR, Holley D, Collins LB, Montgomery SA, Whitmore AC, Hillhouse A, Curry KP, Renner SW, Greenwalt A, Ryan EP, Godfrey V, Heise MT, Threadgill DS, Han A, Swenberg JA, Threadgill DW, Bultman SJ (2014) A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov 4:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peek RM Jr, Blaser MJ (2002) Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2:28–37

    Article  CAS  PubMed  Google Scholar 

  41. Polk DB, Peek RM Jr (2010) Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blumberg BS, Larouze B, London WT, Werner B, Hesser JE, Millman I, Saimot G, Payet M (1975) The relation of infection with the hepatitis B agent to primary hepatic carcinoma. Am J Pathol 81:669–682

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Colombo M, Kuo G, Choo QL, Donato MF, Del Ninno E, Tommasini MA, Dioguardi N, Houghton M (1989) Prevalence of antibodies to hepatitis C virus in Italian patients with hepatocellular carcinoma. Lancet 2:1006–1008

    Article  CAS  PubMed  Google Scholar 

  44. Durst M, Gissmann L, Ikenberg H, zur Hausen H (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A 80:3812–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Epstein MA, Henle G, Achong BG, Barr YM (1965) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt’s lymphoma. J Exp Med 121:761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Young LS, Yap LF, Murray PG (2016) Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16:789–802

    Article  CAS  PubMed  Google Scholar 

  47. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–1869

    Article  CAS  PubMed  Google Scholar 

  48. Goncalves PH, Ziegelbauer J, Uldrick TS, Yarchoan R (2017) Kaposi sarcoma herpesvirus-associated cancers and related diseases. Curr Opin HIV AIDS 12:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI, Shirakawa S, Miyoshi I (1981) Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci U S A 78:6476–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsuoka M, Jeang KT (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7:270–280

    Article  CAS  PubMed  Google Scholar 

  51. Chang Y, Moore PS (2012) Merkel cell carcinoma: a virus-induced human cancer. Annu Rev Pathol 7:123–144

    Article  CAS  PubMed  Google Scholar 

  52. Cheever AW (1985) Schistosoma haematobium: the pathology of experimental infection. Exp Parasitol 59:131–138

    Article  CAS  PubMed  Google Scholar 

  53. Mostafa MH, Sheweita SA, O'Connor PJ (1999) Relationship between schistosomiasis and bladder cancer. Clin Microbiol Rev 12:97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang ZL, Huang Y, Yu XB (2016) Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infect Dis Poverty 5:71

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sripa B, Brindley PJ, Mulvenna J, Laha T, Smout MJ, Mairiang E, Bethony JM, Loukas A (2012) The tumorigenic liver fluke Opisthorchis viverrini--multiple pathways to cancer. Trends Parasitol 28:395–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615

    Article  PubMed  Google Scholar 

  57. Cavallin LE, Goldschmidt-Clermont P, Mesri EA (2014) Molecular and cellular mechanisms of KSHV oncogenesis of Kaposi's sarcoma associated with HIV/AIDS. PLoS Pathog 10:e1004154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mbopi-Keou FX, Belec L, Teo CG, Scully C, Porter SR (2002) Synergism between HIV and other viruses in the mouth. Lancet Infect Dis 2:416–424

    Article  PubMed  Google Scholar 

  59. Arzumanyan A, Reis HM, Feitelson MA (2013) Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13:123–135

    Article  CAS  PubMed  Google Scholar 

  60. Bangham CR, Ratner L (2015) How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol 14:93–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thaiss CA, Zmora N, Levy M, Elinav E (2016) The microbiome and innate immunity. Nature 535:65–74

    Article  CAS  PubMed  Google Scholar 

  62. Heim MH (2013) Innate immunity and HCV. J Hepatol 58:564–574

    Article  CAS  PubMed  Google Scholar 

  63. Li J, Sung CY, Lee N, Ni Y, Pihlajamaki J, Panagiotou G, El-Nezami H (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci U S A 113:E1306–E1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, Paley MA, Antenus M, Williams KL, Erikson J, Wherry EJ, Artis D (2012) Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37:158–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Work I (1994) Schistosomes, liver flukes and Helicobacter pylori. IARC working group on the evaluation of carcinogenic risks to humans. Lyon, 7–14 Jun 1994. IARC Monogr Eval Carcinog Risks Hum 61:1–241

    Google Scholar 

  67. Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347:1175–1186

    Article  CAS  PubMed  Google Scholar 

  68. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY, Poh QH, Doli Sentosa IM, Seow SW, Amoyo AA, Pettersson S, Loke MF, Vadivelu J (2016) Helicobacter pylori and gut microbiota modulate energy homeostasis prior to inducing histopathological changes in mice. Gut Microbes 7:48–53

    Article  PubMed  PubMed Central  Google Scholar 

  69. Muller A (2012) Multistep activation of the Helicobacter pylori effector CagA. J Clin Invest 122:1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Koch KN, Hartung ML, Urban S, Kyburz A, Bahlmann AS, Lind J, Backert S, Taube C, Muller A (2015) Helicobacter urease-induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma. J Clin Invest 125:3297–3302

    Article  PubMed  PubMed Central  Google Scholar 

  71. Perry S, de Jong BC, Solnick JV, de la Luz Sanchez M, Yang S, Lin PL, Hansen LM, Talat N, Hill PC, Hussain R, Adegbola RA, Flynn J, Canfield D, Parsonnet J (2010) Infection with Helicobacter pylori is associated with protection against tuberculosis. PLoS One 5:e8804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kim DJ, Park JH, Franchi L, Backert S, Nunez G (2013) The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1beta production in Helicobacter pylori infected dendritic cells. Eur J Immunol 43:2650–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10:324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN, Francois F, Perez-Perez GI, Loke MF, Goh KL, Vadivelu J (2016) Helicobacter pylori eradication causes perturbation of the human gut microbiome in young adults. PLoS One 11:e0151893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Atherton JC, Blaser MJ (2009) Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 119:2475–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee YY, Mahendra Raj S, Graham DY (2013) Helicobacter pylori infection—a boon or a bane: lessons from studies in a low-prevalence population. Helicobacter 18:338–346

    Article  PubMed  PubMed Central  Google Scholar 

  77. McCoy AN, Araujo-Perez F, Azcarate-Peril A, Yeh JJ, Sandler RS, Keku TO (2013) Fusobacterium is associated with colorectal adenomas. PLoS One 8:e53653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Abed J, Emgard JE, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, Mellul A, Chaushu S, Manson AL, Earl AM, Ou N, Brennan CA, Garrett WS, Bachrach G (2016) Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20:215–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, Shussman N, Almogy G, Cuapio A, Hofer E, Mevorach D, Tabib A, Ortenberg R, Markel G, Miklic K, Jonjic S, Brennan CA, Garrett WS, Bachrach G, Mandelboim O (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang B, Wang K, Jia YP, Zhu P, Fang Y, Zhang ZJ, Mao XH, Li Q, Zeng DZ (2016) Fusobacterium nucleatum-induced impairment of autophagic flux enhances the expression of proinflammatory cytokines via ROS in Caco-2 cells. PLoS One 11:e0165701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, Kanno S, Yamamoto I, Ishigami K, Igarashi H, Maruyama R, Imai K, Yamamoto H, Shinomura Y (2016) Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 22:557–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blaser MJ (2017) The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol 17:461–463

    Article  CAS  PubMed  Google Scholar 

  85. Gomez de Aguero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, Steinert A, Heikenwalder M, Hapfelmeier S, Sauer U, McCoy KD, Macpherson AJ (2016) The maternal microbiota drives early postnatal innate immune development. Science 351:1296–1302

    Article  PubMed  CAS  Google Scholar 

  86. Honda K, Littman DR (2016) The microbiota in adaptive immune homeostasis and disease. Nature 535:75–84

    Article  CAS  PubMed  Google Scholar 

  87. Tamburini S, Shen N, Wu HC, Clemente JC (2016) The microbiome in early life: implications for health outcomes. Nat Med 22:713–722

    Article  CAS  PubMed  Google Scholar 

  88. Hardbower DM, de Sablet T, Chaturvedi R, Wilson KT (2013) Chronic inflammation and oxidative stress: the smoking gun for Helicobacter pylori-induced gastric cancer? Gut Microbes 4:475–481

    Article  PubMed  PubMed Central  Google Scholar 

  89. Koeppel M, Garcia-Alcalde F, Glowinski F, Schlaermann P, Meyer TF (2015) Helicobacter pylori infection causes characteristic DNA damage patterns in human cells. Cell Rep 11:1703–1713

    Article  CAS  PubMed  Google Scholar 

  90. Wroblewski LE, Peek RM Jr (2013) Helicobacter pylori in gastric carcinogenesis: mechanisms. Gastroenterol Clin N Am 42:285–298

    Article  Google Scholar 

  91. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnson JL, Jones MB, Cobb BA (2015) Polysaccharide A from the capsule of Bacteroides fragilis induces clonal CD4+ T cell expansion. J Biol Chem 290:5007–5014

    Article  CAS  PubMed  Google Scholar 

  93. Williams WB, Liao HX, Moody MA, Kepler TB, Alam SM, Gao F, Wiehe K, Trama AM, Jones K, Zhang R, Song H, Marshall DJ, Whitesides JF, Sawatzki K, Hua A, Liu P, Tay MZ, Seaton KE, Shen X, Foulger A, Lloyd KE, Parks R, Pollara J, Ferrari G, Yu JS, Vandergrift N, Montefiori DC, Sobieszczyk ME, Hammer S, Karuna S, Gilbert P, Grove D, Grunenberg N, McElrath MJ, Mascola JR, Koup RA, Corey L, Nabel GJ, Morgan C, Churchyard G, Maenza J, Keefer M, Graham BS, Baden LR, Tomaras GD, Haynes BF (2015) HIV-1 VACCINES. Diversion of HIV-1 vaccine-induced immunity by gp41-microbiota cross-reactive antibodies. Science 349:aab1253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, Hakimpour P, Gill KP, Nakaya HI, Yarovinsky F, Sartor RB, Gewirtz AT, Pulendran B (2014) TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41:478–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A 108:5354–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Karin M, Jobin C, Balkwill F (2014) Chemotherapy, immunity and microbiota—a new triumvirate? Nat Med 20:126–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Jain RK, Forbes NS (2001) Can engineered bacteria help control cancer? Proc Natl Acad Sci U S A 98:14748–14750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 26:154–158

    PubMed  PubMed Central  Google Scholar 

  99. Brosman SA (1991) BCG vaccine in urinary bladder cancer. West J Med 155:633

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fuge O, Vasdev N, Allchorne P, Green JS (2015) Immunotherapy for bladder cancer. Res Rep Urol 7:65–79

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Seow SW, Cai S, Rahmat JN, Bay BH, Lee YK, Chan YH, Mahendran R (2010) Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors. Cancer Sci 101:751–758

    Article  CAS  PubMed  Google Scholar 

  102. Fujimori M, Amano J, Taniguchi S (2002) The genus Bifidobacterium for cancer gene therapy. Curr Opin Drug Discov Devel 5:200–203

    CAS  PubMed  Google Scholar 

  103. Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther 7:269–274

    Article  CAS  PubMed  Google Scholar 

  104. Dang LH, Bettegowda C, Agrawal N, Cheong I, Huso D, Frost P, Loganzo F, Greenberger L, Barkoczy J, Pettit GR, Smith AB 3rd, Gurulingappa H, Khan S, Parmigiani G, Kinzler KW, Zhou S, Vogelstein B (2004) Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents. Cancer Biol Ther 3:326–337

    Article  CAS  PubMed  Google Scholar 

  105. Lambin P, Theys J, Landuyt W, Rijken P, van der Kogel A, van der Schueren E, Hodgkiss R, Fowler J, Nuyts S, de Bruijn E, Van Mellaert L, Anne J (1998) Colonisation of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe 4:183–188

    Article  CAS  PubMed  Google Scholar 

  106. Drees J, Mertensotto M, Liu G, Panyam J, Leonard A, Augustin L, Schottel J, Saltzman D (2015) Attenuated Salmonella enterica Typhimurium reduces tumor burden in an autochthonous breast cancer model. Anticancer Res 35:843–849

    PubMed  Google Scholar 

  107. Coutermarsh-Ott SL, Broadway KM, Scharf BE, Allen IC (2017) Effect of Salmonella enterica serovar Typhimurium VNP20009 and VNP20009 with restored chemotaxis on 4T1 mouse mammary carcinoma progression. Oncotarget 8:33601–33613

    Article  PubMed  PubMed Central  Google Scholar 

  108. Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, Falk C, Erhardt M, Weiss S (2018) Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology 7:e1382791

    Article  PubMed  Google Scholar 

  109. Zheng JH, Min JJ (2016) Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam Med J 52:173–184

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kucerova P, Cervinkova M (2016) Spontaneous regression of tumour and the role of microbial infection—possibilities for cancer treatment. Anti-Cancer Drugs 27:269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chakrabarty AM (2016) Bacterial azurin in potential cancer therapy. Cell Cycle 15:1665–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Collier RJ (1975) Diphtheria toxin: mode of action and structure. Bacteriol Rev 39:54–85

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Conte PF, Gennari A, Landucci E, Orlandini C (2000) Role of epirubicin in advanced breast cancer. Clin Breast Cancer 1(Suppl 1):S46–S51

    Article  PubMed  Google Scholar 

  114. Dorr RT (1992) Bleomycin pharmacology: mechanism of action and resistance, and clinical pharmacokinetics. Semin Oncol 19:3–8

    CAS  PubMed  Google Scholar 

  115. Fukushima T, Ueda T, Uchida M, Nakamura T (1993) Action mechanism of idarubicin (4-demethoxydaunorubicin) as compared with daunorubicin in leukemic cells. Int J Hematol 57:121–130

    CAS  PubMed  Google Scholar 

  116. Koba M, Konopa J (2005) Actinomycin D and its mechanisms of action. Postepy Hig Med Dosw (Online) 59:290–298

    Google Scholar 

  117. Verweij J, Pinedo HM (1990) Mitomycin C: mechanism of action, usefulness and limitations. Anti-Cancer Drugs 1:5–13

    Article  CAS  PubMed  Google Scholar 

  118. Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 1845:84–89

    CAS  PubMed  Google Scholar 

  119. Fox BA, Sanders KL, Chen S, Bzik DJ (2013) Targeting tumors with nonreplicating Toxoplasma gondii uracil auxotroph vaccines. Trends Parasitol 29:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Muller-Werdan U, Pfeifer A, Hubner G, Seliger C, Reithmann C, Rupp H, Werdan K (1997) Partial inhibition of protein synthesis by Pseudomonas exotoxin A deranges catecholamine sensitivity of cultured rat heart myocytes. J Mol Cell Cardiol 29:799–811

    Article  CAS  PubMed  Google Scholar 

  121. Stryckmans PA, Manaster J, Lachapelle F, Socquet M (1973) Mode of action of chemotherapy in vivo on human acute leukemia. I. Daunomycin. J Clin Invest 52:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bucci M, Roviezzo F, Cicala C, Sessa WC, Cirino G (2000) Geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) mediated signal transduction has anti-inflammatory effects and interacts with glucocorticoid receptor in vivo. Br J Pharmacol 131:13–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ochel HJ, Eichhorn K, Gademann G (2001) Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones 6:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bara R, Aly AH, Pretsch A, Wray V, Wang B, Proksch P, Debbab A (2013) Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J Antibiot (Tokyo) 66:491–493

    Article  CAS  Google Scholar 

  126. Divac Rankov A, Ljujic M, Petric M, Radojkovic D, Pesic M, Dinic J (2017) Targeting autophagy to modulate cell survival: a comparative analysis in cancer, normal and embryonic cells. Histochem Cell Biol 148:529–544

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Saha and Robertson laboratories for their discussions and support in the review. We apologize to authors whose works were not included in this chapter due to space limitations.

Funding: This work was supported by the following grants: Avon Foundation Grant (Avon-02-2012-053) to E.S.R. and Welcome Trust/DBT India Alliance (IA/I/14/2/501537) to A.S.

Conflicts of interest: The authors declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhik Saha or Erle S. Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, A., Robertson, E.S. (2019). Microbiome and Human Malignancies. In: Robertson, E. (eds) Microbiome and Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-030-04155-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04155-7_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-04154-0

  • Online ISBN: 978-3-030-04155-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics