Skip to main content

Uzawa-Type and Augmented Lagrangian Methods for Double Saddle Point Systems

  • Chapter
  • First Online:
Structured Matrices in Numerical Linear Algebra

Part of the book series: Springer INdAM Series ((SINDAMS,volume 30))

Abstract

We study different types of stationary iterative methods for solving a class of large, sparse linear systems with double saddle point structure. In particular, we propose a class of Uzawa-like methods including a generalized (block) Gauss-Seidel (GGS) scheme and a generalized (block) successive overrelaxation (GSOR) method. Both schemes rely on a relaxation parameter, and we establish convergence intervals for these parameters. Additionally, we investigate the performance of these methods in combination with an augmented Lagrangian approach. Numerical experiments are reported for test problems from two different applications, a mixed-hybrid discretization of the potential fluid flow problem and finite element modeling of liquid crystal directors. Our results show that fast convergence can be achieved with a suitable choice of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beik, F.P.A., Benzi, M.: Iterative methods for double saddle point systems. SIAM J. Matrix Anal. Appl. 39, 602–621 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 417–477 (2002)

    Article  MathSciNet  Google Scholar 

  3. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  4. Benzi, M., Evans, T.M., Hamilton, S.P., Lupo Pasini, M., Slattery, S.R.: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems. Numer. Linear Algebra Appl. 24, e2008 (2017)

    Article  MathSciNet  Google Scholar 

  5. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  6. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994)

    Article  MathSciNet  Google Scholar 

  7. Hoemmen, M.: Communication-avoiding Krylov subspace methods. Doctoral Dissertation, University of California at Berkeley, Berkeley (2010)

    Google Scholar 

  8. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  9. Lupo Pasini, M.: Convergence analysis of Anderson-type acceleration of Richardson’s iteration, Preprint, Department of Mathematics and Computer Science, Emory University (2017)

    Google Scholar 

  10. Maryška, J., Rozložník, M., Tůma, M.: Schur complement systems in the mixed-hybrid finite element approximation of the potential fluid flow problem. SIAM J. Sci. Comput. 22, 704–723 (2005)

    Article  MathSciNet  Google Scholar 

  11. Pratapa, P.P., Suryanarayana, P., Pask, J.E.: Anderson acceleration of the Jacobi iterative method: an efficient alternative to preconditioned Krylov methods for large, sparse linear systems. J. Comput. Phys. 306, 43–54 (2016)

    Article  MathSciNet  Google Scholar 

  12. Pratapa, P.P., Suryanarayana, P., Pask, J.E.: Alternating Anderson-Richardson method: an efficient alternative to preconditioned Krylov methods for large, sparse linear systems. Comput. Phys. Commun. 234, 278–285 (2019)

    Article  Google Scholar 

  13. Ramage, A., Gartland, E.C., Jr.: A preconditioned nullspace method for liquid crystal director modeling. SIAM J. Sci. Comput. 35, B226–B247 (2013)

    Article  MathSciNet  Google Scholar 

  14. Saad, S.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  Google Scholar 

  15. Stoyanov, M., Webster, C.: Numerical analysis of fixed point algorithms in the presence of hardware faults. SIAM J. Sci. Comput. 35, C532–C553 (2015)

    Article  MathSciNet  Google Scholar 

  16. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49, 1715–1735 (2015)

    Article  MathSciNet  Google Scholar 

  17. Yamazaki, I., Rajamanickam, S., Boman, E.G., Hoemmen, M., Heroux, M., Tomov, S.: Domain decomposition preconditioners for communication-avoiding Krylov subspace methods on a hybrid CPU/GPU cluster. In: International Conference on High Performance Computing, Networking, Storage and Analysis, SC, pp. 933–944 (2015)

    Google Scholar 

  18. Young, D.M.: Iterative Solution or Large Linear Systems. Academic Press, New York (1971)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Alison Ramage and Miroslav Tma for providing the test problems used in the numerical experiments. We also express our sincere thank to two anonymous referees for their valuable comments and helpful suggestions. The second author is grateful for the hospitality of the Department of Mathematics and Computer Science at Emory University, where part of this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Benzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benzi, M., Beik, F.P.A. (2019). Uzawa-Type and Augmented Lagrangian Methods for Double Saddle Point Systems. In: Bini, D., Di Benedetto, F., Tyrtyshnikov, E., Van Barel, M. (eds) Structured Matrices in Numerical Linear Algebra. Springer INdAM Series, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-04088-8_11

Download citation

Publish with us

Policies and ethics