Skip to main content

Hierarchical Learning Classifier Systems for Polymorphism in Heterogeneous Niches

  • Conference paper
  • First Online:
AI 2018: Advances in Artificial Intelligence (AI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11320))

Included in the following conference series:

  • 2303 Accesses

Abstract

Learning classifier systems (LCSs) have been successfully adapted to real-world domains with the claim of human-readable rule populations. However, due to the inherent rich characteristic of the employed representation, it is possible to represent the underlying patterns in multiple (polymorphic) ways, which obscures the most informative patterns. A novel rule reduction algorithm is proposed based on ensembles of multiple trained LCSs populations in a hierarchical learning architecture to reduce the local diversity and global polymorphism. The primary aim of this project is to interrogate the hidden patterns in LCSs’ trained population rather than improve the predictive power on test sets. This enables successful visualization of the importance of features in data groups (niches) that can contain heterogeneous patterns, i.e. even if different patterns result in the same class the importance of features can be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Partha, R., et al.: Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. eLife 6, e25884 (2017)

    Article  Google Scholar 

  2. Liu, Y., Browne, W.N., Xue, B.: Adapting bagging and boosting to learning classifier systems. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 405–420. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_28

    Chapter  Google Scholar 

  3. Orriols-Puig, A., Bernadó-Mansilla, E.: Revisiting UCS: description, fitness sharing, and comparison with XCS. In: Bacardit, J., Bernadó-Mansilla, E., Butz, M.V., Kovacs, T., Llorà, X., Takadama, K. (eds.) IWLCS 2006-2007. LNCS (LNAI), vol. 4998, pp. 96–116. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88138-4_6

    Chapter  MATH  Google Scholar 

  4. Stone, C., Bull, L.: For real! XCS with continuous-valued inputs. Evol. Comput. 11(3), 299–336 (2003)

    Article  Google Scholar 

  5. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, vol. 1. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  6. Dayan, P., Watkins, C.J.C.H.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

  7. Urbanowicz, R.J., Browne, W.N.: Introduction to Learning Classifier Systems. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55007-6

    Book  MATH  Google Scholar 

  8. Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with statistical and visualization-guided knowledge discovery for Michigan-style learning classifier systems. IEEE Comput. Intell. Mag. 7(4), 35–45 (2012)

    Article  Google Scholar 

  9. Nakata, M., Lanzi, P.L., Takadama, K.: Rule reduction by selection strategy in XCS with adaptive action map. Evol. Intell. 8(2–3), 71–87 (2015)

    Article  Google Scholar 

  10. Butz, M.V., Lanzi, P.L., Wilson, S.W.: Function approximation with XCS: hyperellipsoidal conditions, recursive least squares, and compaction. IEEE Trans. Evol. Comput. 12(3), 355–376 (2008)

    Article  Google Scholar 

  11. Cervante, L., Xue, B., Zhang, M., Shang, L.: Binary particle swarm optimisation for feature selection: a filter based approach. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  12. Iacca, G., Neri, F., Mininno, E., Ong, Y.-S., Lim, M.-H.: Ockham’s Razor in memetic computing: three stage optimal memetic exploration. Inf. Sci. 188, 17–43 (2012)

    Article  MathSciNet  Google Scholar 

  13. Quinlan, J.R., et al.: Bagging, boosting, and C4.5. In: AAAI/IAAI, vol. 1, pp. 725–730 (1996)

    Google Scholar 

  14. Baluja, S.: Population-based incremental learning. A method for integrating genetic search based function optimization and competitive learning. Technical report, Department of Computer Science, Carnegie Mellon University in Pittsburgh, Pennsylvania (1994)

    Google Scholar 

  15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  16. Liu, Y., Xue, B., Browne, W.N.: Visualisation and optimisation of learning classifier systems for multiple domain learning. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 448–461. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_37

    Chapter  Google Scholar 

  17. Bacardit, J., Burke, E.K., Krasnogor, N.: Improving the scalability of rule-based evolutionary learning. Memetic Comput. 1(1), 55–67 (2009)

    Article  Google Scholar 

  18. Calian, D.A., Bacardit, J.: Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets. Memetic Comput. 5(2), 95–130 (2013)

    Article  Google Scholar 

  19. Iqbal, M., Browne, W.N., Zhang, M.: Learning overlapping natured and niche imbalance Boolean problems using XCS classifier systems. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1818–1825 (2013)

    Google Scholar 

  20. Alvarez, I.M., Browne, W.N., Zhang, M.: Reusing learned functionality to address complex Boolean functions. In: Dick, G. (ed.) SEAL 2014. LNCS, vol. 8886, pp. 383–394. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will N. Browne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Browne, W.N., Xue, B. (2018). Hierarchical Learning Classifier Systems for Polymorphism in Heterogeneous Niches. In: Mitrovic, T., Xue, B., Li, X. (eds) AI 2018: Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer Science(), vol 11320. Springer, Cham. https://doi.org/10.1007/978-3-030-03991-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03991-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03990-5

  • Online ISBN: 978-3-030-03991-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics