Skip to main content

Geometric Accuracy of Machine Tools

  • Chapter
  • First Online:
Measurement in Machining and Tribology

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

Geometric accuracy belongs to one of the main parameters of the machine tool. It serves not only for the purpose of machine delivery to the customer or for demonstration of proper service intervention but also for assessment of improvements compared to the current state. The information on geometric accuracy of the machine is also used as a feedback to the machine development. Therefore, increasing the geometric accuracy is a feature of the machine that needs to be constantly improved. This chapter presents geometric accuracy tests, instrumentation and examples of selected procedures to increase the geometric accuracy of CNC machine tools .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janovkych R (2017) Statistical tools in metrology. Brno University of Technology, Presentation

    Google Scholar 

  2. Marek J et al (2015) Design of CNC machine tools, MM Special. MM Publishing, s.r.o, ISBN: 978-80-260-8637-6

    Google Scholar 

  3. Taniguchi N (1983) Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann 32:573–582. https://doi.org/10.1016/S0007-8506(07)60185-1

    Article  Google Scholar 

  4. Marek J et al (2018) Design of CNC machine tools IV. MM publishing, s.r.o. ISBN 978-80-906310-8-3

    Google Scholar 

  5. Hirsch A (2012) Werkzeugmaschinen - Grundlagen, Auslesung, Ausfuhrungsbeispiele. Springer, Berlin. ISBN 978-3-8348-0823-3

    Google Scholar 

  6. Holub M (2012) Effect of geometrical precision machining centers on the desired characteristics of the goods. Brno University of Technology, Doctoral Thesis

    Google Scholar 

  7. Liang S, Shih AJ (2016) Analysis of machining and machine tools. Springer US, Boston. https://doi.org/10.1007/978-1-4899-7645-1

    Book  Google Scholar 

  8. Marek J, Blecha P (2009) Compensation of axes at vertical lathes. In: Recent advances in mechatronics 2008–2009. Springer, Berlin, pp 371–376. ISBN 978-364205021-3

    Chapter  Google Scholar 

  9. Ibaraki S, Knapp W (2012) Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. Int J Autom Technol 6:110–124. https://doi.org/10.20965/ijat.2012.p0110

    Article  Google Scholar 

  10. ISO 230-6:2002 (2002) Test code for machine tools—Part 6: determination of positioning accuracy on body and face diagonals (Diagonal displacement tests)

    Google Scholar 

  11. AFMTechnology (2013) Volumetric compensation of machine tools. http://www.afm-tec.com/. Presentation

  12. ETALON AG (2014) Multilateration. http://www.etalon-ag.com/technologie/multilateration/. Presentation

  13. Marek T, Holub M (2017) Production machines and equipment. Brno University of Technology, Presentation

    Google Scholar 

  14. ETALON AG (2015) TRAC-CAL Drehachsen. Presentation

    Google Scholar 

  15. Ahn KG, Cho DW (2000) An analysis of the volumetric error uncertainty of a three-axis machine tool by beta distribution. Int J Mach Tools Manuf 40:2235–2248. https://doi.org/10.1016/S0890-6955(00)00048-1

    Article  Google Scholar 

  16. Ramesh R, Mannan MA, Poo AN (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manufact 40:1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2

    Article  Google Scholar 

  17. Ibaraki S, Sawada M, Matsubara A, Matsushita T (2010) Machining tests to identify kinematic errors on five-axis machine tools. Precis Eng 34:387–398. https://doi.org/10.1016/J.PRECISIONENG.2009.09.007

    Article  Google Scholar 

  18. Ramesh R, Mannan M, Poo A (2000) Error compensation in machine tools—a review: part I: geometric, cutting-force induced and fixture-dependent errors. Int J Mach Tools Manuf 40:1235–1256. https://doi.org/10.1016/S0890-6955(00)00009-2

    Article  Google Scholar 

  19. Marek T, Marek J (2017) Having a probe is not enough. RENISHAW. ISBN 978-80-87017-20-3

    Google Scholar 

  20. Linares J-M, Chaves-Jacob J, Schwenke H, Longstaff A, Fletcher S, Flore J, Uhlmann E, Wintering J (2014) Impact of measurement procedure when error mapping and compensating a small CNC machine using a multilateration laser interferometer. Precis Eng 38:578–588. https://doi.org/10.1016/j.precisioneng.2014.02.008

    Article  Google Scholar 

  21. Holub M, Knobloch J, Pernikar J (2015) GTS—test code for machine tools. Brno University of Technology. Presentation

    Google Scholar 

  22. Holub M, Knobloch J (2014) Geometric accuracy of CNC machine tools. In: Proceedings of the 16th international conference on mechatronics—mechatronika 2014. IEEE, pp 260–265. https://doi.org/10.1109/mechatronika.2014.7018268

  23. Holub M, Blecha P, Bradac F, Kana R (2015) Volumetric compensation of three-axis vertical machining centre. MM Sci J 2015:677–681. https://doi.org/10.17973/MMSJ.2015_10_201534

    Article  Google Scholar 

  24. Schwenke H, Franke M, Hannaford J, Kunzmann H (2005) Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Ann—Manuf Technol 54:475–478. https://doi.org/10.1016/S0007-8506(07)60148-6

    Article  Google Scholar 

  25. Wan A, Song L, Xu J, Liu S, Chen K (2018) Calibration and compensation of machine tool volumetric error using a laser tracker. Int J Mach Tools Manuf 124:126–133. https://doi.org/10.1016/J.IJMACHTOOLS.2017.10.004

    Article  Google Scholar 

  26. Holub M, Knobloch J (2014) Geometric accuracy of CNC machine tools. In: Proceedings of the 16th international conference on mechatronics, mechatronika 2014, pp 260–265. https://doi.org/10.1109/mechatronika.2014.7018268

  27. Holub M, Vetiska J, Bradac F, Vala M (2017) Application on-the-fly measurement of CNC machine tools. MM Sci J 2017:2085–2089. https://doi.org/10.17973/MMSJ.2017_12_201791

    Article  Google Scholar 

  28. Holub M, Vetiska J, Knobloch J, Minar P, Blecha P (2017) Methodological procedure of efficient machine tool construction. Brno University of Technology, Certificate 1201/2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Holub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holub, M. (2019). Geometric Accuracy of Machine Tools. In: Davim, J. (eds) Measurement in Machining and Tribology. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-03822-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03822-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03821-2

  • Online ISBN: 978-3-030-03822-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics