Skip to main content

Machine Learning Techniques for Single-Line-to-Ground Fault Classification in Nonintrusive Fault Detection of Extra High-Voltage Transmission Network Systems

  • Conference paper
  • First Online:
Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications (ECC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 891))

  • 718 Accesses

Abstract

This paper presents artificial intelligence (AI) approaches for fault classifications in non-intrusive single-line-to-ground fault (SLGF) detection of extra high voltage transmission network systems. The input features of the AI algorithms are extracted using the power-spectrum-based hyperbolic S-transform (PS-HST) for reducing the dimensions of the power signature inputs measured by using non-intrusive fault monitoring (NIFM) techniques. To enhance the identification accuracy, these features after pre-processing are given to AI algorithms for presenting and evaluating in this paper. Different machine learning techniques are then utilized to compare which classification algorithms are suitable to diagnose the SLGF for various power signatures in a NIFM system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C.S., Liu, C.W., Jiang, J.A.: A new adaptive PMU based protection scheme for transposed/un-transposed parallel transmission lines. IEEE Trans. Power Deliv. 17(2), 395–404 (2002)

    Article  Google Scholar 

  2. Eissa, M.M., Masoud, M.E., Elanwar, M.M.M.: A novel back up wide area protection technique for power transmission grids using phasor measurement unit. IEEE Trans. Power Deliv. 25(1), 270–278 (2010)

    Article  Google Scholar 

  3. Da Silva, M., Oleskoviczb, M., Coury, D.V.: A hybrid fault locator for three-terminal lines based on wavelet transforms. Electr. Power Syst. Res. 78, 1980–1988 (2008)

    Article  Google Scholar 

  4. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  5. Chang, H.H., Lin, L.S., Chen, N., Lee, W.J.: Particle-swarm-optimization-based nonintrusive demand monitoring and load identification in smart meters. IEEE Trans. Ind. Appl. 49(5), 2229–2236 (2013)

    Article  Google Scholar 

  6. Chang, H.H., Lian, K.L., Su, Y.C., Lee, W.J.: Power-spectrum based wavelet transform for nonintrusive demand monitoring and load identification. IEEE Trans. Ind. Appl. 50(3), 2081–2089 (2014)

    Article  Google Scholar 

  7. Chang, H.H.: Non-intrusive fault identification of power distribution systems in intelligent buildings based on power-spectrum-based wavelet transform. Energy Build. 127, 930–941 (2016)

    Article  Google Scholar 

  8. Chang, H.H., Linh, N.V., Lee, W.J.: A novel nonintrusive fault identification for power transmission networks using power-spectrum-based hyperbolic s-transform-part i: fault classification. In: IEEE 54th Annual Industrial and Commercial Power Systems (I&CPS), Niagara Falls, ON, Canada (2018)

    Google Scholar 

  9. https://docs.orange.biolab.si/3/visual-programming/widgets/model/svm.html

  10. Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Miscellaneous Clustering Methods, In Cluster Analysis, 5th edn. Wiley, Chichester (2011)

    Book  Google Scholar 

  11. Wagner, S., et al.: Architecture and design of the heuristiclab optimization environment. In: Advanced Methods and Applications in Computational Intelligence, Topics in Intelligent Engineering and Informatics Series, pp. 197–261. Springer (2014)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Ministry of Science and Technology of the Taiwan, Republic of China, for financially supporting this research under Contract No. MOST 107-2221-E-228-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsueh-Hsien Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, HH., Zhang, R. (2019). Machine Learning Techniques for Single-Line-to-Ground Fault Classification in Nonintrusive Fault Detection of Extra High-Voltage Transmission Network Systems. In: Krömer, P., Zhang, H., Liang, Y., Pan, JS. (eds) Proceedings of the Fifth Euro-China Conference on Intelligent Data Analysis and Applications. ECC 2018. Advances in Intelligent Systems and Computing, vol 891. Springer, Cham. https://doi.org/10.1007/978-3-030-03766-6_12

Download citation

Publish with us

Policies and ethics