Skip to main content

Chromium in Health and Longevity

  • Chapter
  • First Online:
Trace Elements and Minerals in Health and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 8))

Abstract

Trivalent chromium is essential to normal carbohydrate, lipid and protein metabolism . Chromium is biologically active as part of an oligopeptide—chromodulin—potentiating the effect of insulin by facilitating insulin binding to receptors at the cell surface. With chromium acting as a cofactor of insulin, Cr activity in the organism is parallel to insulin functions. Cr(III) can help enhance the role of insulin, the critical hormone that controls blood sugar and helps bring glucose into cells where it’s used for bodily energy. Chromium deficiency has been suggested to lead to symptoms associated with adult-onset diabetes and cardiovascular disease, and these supplements have recently found potential as therapeutic agents in the treatment of adultonset diabetes. Cr(VI) is one of the few carcinogenic metals that directly reacts with DNA, forming adducts, and inducing mutations. The results of a wide range of studies indicate that the CpG1 methylation level of p16 could be used as a biomarker of epigenetic effect caused by Cr(VI) treatment, which can enhance cell damage by regulating its expression or affecting some transcription factors to combine with their DNA strand sites. In addition, it is difficult to distinguish between the effects caused by chromium(VI) and those caused by chromium(III ) since chromium(VI) is rapidly reduced to chromium(III ) after penetration of biological membranes and in the gastric environment. In addition to its role in glucose and lipid metabolism , chromium also functions as an antioxidant. Chromium (III) protects organism from oxidative stress associated with reactive oxygen species. These ROS extremely reactive chemical molecules, are considered toxic to produce oxidative damage to various cellular components which causes cellular dysfunction that accompanies aging process. The antiaging effect of chromium is undoubtedly related to the effect of chromium on insulin action. Chromium in a utilizable form, like dietary restriction, prevents hyperglycemia, hyperinsulinemia, protein glycation and extends life span . Because the body’s ability to control blood glucose is critical to many life functions, a consequence of Cr supplementation can be improved health and reproductive outcomes as well as improved survival rate or life span .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaseth J, Alexander J, Norseth T (1982) Uptake of 51Cr-chromate by human erythrocytes—a role of glutathione. Acta Pharmacol Toxicol. 50:310–315

    Article  CAS  Google Scholar 

  • Abraham AS, Sonnenblick M, Eini M (1982) The action of chromium on serum lipids and on atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 42:185–195

    Article  CAS  PubMed  Google Scholar 

  • Ali AH, Kondo K, Namura T, Senba Y, Takizawa H, Nakagawa Y, Toba H, Kenzaki K, Sakiyama S, Tangoku A (2011) Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol Carcinog 50(2):89–99. https://doi.org/10.1002/mc.20697

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA (1987) Trace elements in human and animal nutrition, vol 1, 5th edn. Academic, New York, p. 225

    Chapter  Google Scholar 

  • Anderson RA (1989) Essentiality of chromium in humans. Sci Total Environ 86:75

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA (1994) Stress effects on chromium nutrition of humans and farm animals. In: Lyons P, Jacques KA (eds) Proceedings of Alltech’s 10th annual symposium, biotechnology in the feed industry. Nottingham University Press, London, pp 267–274

    Google Scholar 

  • Anderson RA (1997) Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr 16:404–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA (1998) Chromium, glucose intolerance and diabetes. J Am Coll Nutr 17(6):548

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA (2000a) Chromium in the prevention and control of diabetes. Diabetes Metabol 26:22–27

    CAS  Google Scholar 

  • Anderson RA (2000b) Exercise effects on trace element metabolism. In: Rousssel AM, Anderson RA, Favier AE (eds) Trace element in man and animal. Kluwer Academic/Plenum Publishers, New York, p 393

    Google Scholar 

  • Anderson RA, Bryden NA (1983) Concentration, insulin potentiation, and absorption of chromium in beer. J Agric Chem 31:308

    Article  CAS  Google Scholar 

  • Anderson RA, Polansky MM, Bryden NA, Roginski EE, Patterson KY, Reamer DC (1982) Effects of exercise (running) on serum glucose, insulin, glucagon and chromium excretion. Diabetes 32:212–216

    Article  Google Scholar 

  • Anderson RA, Polansky MM, Bryden NA, Patterson KY, Veillon C, GlinsmannW H (1983) Effects of chromium supplementation on urinary Cr excretion of human subjects and correlation of Cr excretion with selected clinical parameters. J Nutr 113:276–281

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA, Polansky MM, Bryden NA, Canary JJ (1991) Supplemental chromium effects on glucose, insulin gluagon and urinary chromium losses in subjects consuming controlled low-chromium diets. Am J Clin Nutr 54:909

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA, Bryden NA, Polansky MM (1992) Dietary chromium intake. Freely chosen diets, institutional diets and individual foods. Biol Trace Elem Res 32:117

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA, Bryden NA, Polansky MM, Gautschi K (1996) Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J Trace Elem Exp Med 9:11–25

    Article  CAS  Google Scholar 

  • Anderson RA, Cheng N, Bryden NA et al (1997) Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46(11):1786–1791

    Article  CAS  PubMed  Google Scholar 

  • Anderson RA, Bryden NA, Polansky MM. (2003). Stability and absorption of chromium and absorption of chromium histidine by humans. J Trace Elem Med Biol 16:110 (abstr)

    Google Scholar 

  • Ani M, Moshtaghie AA (1992) The effect of chromium on parameters related to iron metabolism. Biol Trace Elem Res 32:57–64

    Article  CAS  PubMed  Google Scholar 

  • Barceloux DG (1999) Chromium. Clin Toxicol 37:173–194

    CAS  Google Scholar 

  • Bollati V, Marinelli B, Apostoli P, Bonzini M, Nordio F, Hoxha M, Pegoraro V, Motta V, Tarantini L, Cantone L, Schwartz J, Bertazzi PA, Baccarelli A (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 118(6):763–768. https://doi.org/10.1289/ehp.0901300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunting LD, Fernandez JM Jr, Thompson DL, Southern LL (1994) Influence of chromium picolinate on glucose usage and metabolic criteria in growing Holstein calves. J Anim Sci 72:1591–1599

    Article  CAS  PubMed  Google Scholar 

  • Campbell RG (1996) The effects of chromium picolinate on the fertility and fecundity of sows under commercial conditions. In: Proceedings of the 16th annual prince feed ingredient conference, Quincy, IL

    Google Scholar 

  • Cefalu W.T. (1998). Chromium and insulin sensitivity. In: International symposium on the health effects of dietary chromium. Abstract book, Dedham, MA, p 2

    Google Scholar 

  • Cerami AJ (1985) Hypothesis: Glucose as a mediator of ageing. J Am Geriatr Soc 33:626–634

    Article  CAS  PubMed  Google Scholar 

  • Chang AM, Halter JB (2003) Aging and insulin secretion. Am J Physiol Endocrinol Metab 284:E7–E12

    Article  CAS  PubMed  Google Scholar 

  • Chen NSC, Tsai A, Dyer LA (1973) Effect of chelating agents on chromium absorption. J Nutr 103:1182

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Kluz T, Fang L, Zhang X, Sun H, Jin C, Costa M (2016) Hexavalent Chromium (Cr(VI)) Down-regulates acetylation of histone H4 at lysine 16 through induction of stressor protein Nupr1. PLoS ONE 11(6):e0157317. https://doi.org/10.1371/journal.pone.0157317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Jin X, Shan Z, Li S, Yin J, Sun T, Luo C, Yang W, Yao P, Yu K, Zhang Y, Cheng Q, Cheng J, BaoW Liu L (2017) Inverse association of plasma chromium levels with newly diagnosed type 2 diabetes: a case-control study. Nutrients. 9(3):294. https://doi.org/10.3390/nu9030294

    Article  CAS  PubMed Central  Google Scholar 

  • Cheng H-H, Lai M-H, Hou W-C, Huang C-L (2004) Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. J Agric Food Chem 52:1385–1389

    Article  CAS  PubMed  Google Scholar 

  • Cocho JA, Cervilla JR, Rey-Goldar ML, Fdez-Lorenzo JR, Fraga JM (1973) Chromium content in human milk, cow’s milk, and infant formulas. Biol Trace Elem Res 32:105–107

    Article  Google Scholar 

  • Cohen MD, Kargacin B, Klein CB, Costa M (1993) Mechanisms of chromium carcinogenity and toxicity. Crit Rev Toxicol 23:255–281

    Article  CAS  PubMed  Google Scholar 

  • Corbett GE, Dodge DG, O’Flaherty EO et al (1998) In vitro reduction kinetics of hexavalent chromium in human blood. Environ Res 78:7–11

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Davis CM, Vincent JB (1997a) Isolation and characterization of a biologically active chromium oligopeptide from bovine liver. Arch Biochem Biophys 339:335–343

    Article  CAS  PubMed  Google Scholar 

  • Davis CM, Vincent JB (1997b) Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36:4382–4385

    Article  CAS  PubMed  Google Scholar 

  • De Flora S, Badolati GS, Serra D et al (1987) Circadian reduction of chromium in the gastric environment. Mutat Res 192:169–174

    Article  PubMed  Google Scholar 

  • De Flora S, Camoirano A, Serra D, Bennicelli C (1989) Genotoxicity and metabolism of chromium compounds. Toxicol Environ Chem 19:153–160

    Article  Google Scholar 

  • Devoy J, Géhin A, Müller S, Melczer M, Remy A, Antoine G, Sponne I (2016) Evaluation of chromium in red blood cells as an indicator of exposure to hexavalent chromium: an in vitro study. Toxicol Lett 25:63–70

    Article  CAS  Google Scholar 

  • Doisy RJ, Streeten DPH, Freiberg JM, Schneider AJ (1976). Trace elements in human health and disease, vol II. Academic, New York, p 79

    Google Scholar 

  • Dowling HJ, Offenbacher EG, Andpi-Sunyer FX (1990) Effects of amino acids on the absorption of trivalent chromium and its retention by regions of the small intestine. Nutr Res 10:1261

    Article  CAS  Google Scholar 

  • Dubois F, Belleville F (1991) Chromium—physiological role and implications for human disease. Pathologie-Biologie (Paris) 39:801–808

    Google Scholar 

  • Ducros V (1992) Chromium metabolism. A literature review. Biol Trace Elem Res 32:65

    Article  CAS  PubMed  Google Scholar 

  • Ellis EN, Brouhard BH, Lynch RE, Dawson EB, Tisdell R, Nichols MM, Ramirez F (1982) Effects of hemodialysis and dimercaprol in acute dichromate poisoning. J Toxicol Clin Toxicol 19:249–258

    Article  CAS  PubMed  Google Scholar 

  • EPA (1984) Health assessment document for chromium. Environmental Assessment and Criteria Office, U.S. Environmental Protection Agency, Research Triangle Park, pp 199–204 (NC. EPA600883014F)

    Google Scholar 

  • Evans GW, Bowman TD (1992) Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem 48:243–250

    Article  Google Scholar 

  • Evans GW, Meyer L (1992) Chromium picolinate increases longevity. Age 15:134

    Google Scholar 

  • Evans GW, Meyer LK (1994) Life span is increased in rats supplemented with a chromium-pyridine 2 carboxylate complex. Adv Sci Res 1:19–23

    Google Scholar 

  • Evans GW, Pouchnik DJ (1993) Composition and biological activity of chromium-pyridine carboxylate complexes. J Inorgan Biochem 49:177–187

    Article  CAS  Google Scholar 

  • Evock-Clover CM, Poalsky MM, Anderson RA, Steel NC (1993) J Nutr 123:1504–1512

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  PubMed  Google Scholar 

  • Frank A, Anke M, Danielsson R (2000a) Experimental copper and chromium deficiency and additional molybdenum supplementation in goats. I. Feed consumption and weight development. Sci Total Environ 249:133–142

    Article  CAS  PubMed  Google Scholar 

  • Frank A, Danielsson R, Jones B (2000b) Experimental copper and chromium deficiency and additional molybdenum supplementation in goats. II. Concentrations of trace and minor elements in liver, kidneys and ribs: haematology and clinical chemistry. Sci Total Environ 249:143–170

    Article  CAS  PubMed  Google Scholar 

  • Freund H, Atamian S, Fischer JE (1979) Chromium deficiency during total parenteral nutrition. J Am Med Assoc 214:496–498

    Article  Google Scholar 

  • Gad SC, Powers WJ, Dunn BJ et al (1986) Acute toxicity of four chromate salts. In: Serrone DM (ed) Chromium symposium. An update. Industrial Health Foundation Inc., Pittsburgh, PA, pp 43–58

    Google Scholar 

  • Gironella M, Malicet C, Cano C, Sandi MJ, Hamidi T, Tauil RM et al (2009) p8/nupr1 regulates DNA-repair activity after double-strand gamma irradiation-induced DNA damage. J Cell Physiol 221(3):594–602

    Article  CAS  PubMed  Google Scholar 

  • Goruppi S, Patten RD, Force T, Kyriakis JM (2007) Helix-loop-helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction. Mol Cell Biol 27(3):993–1006

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK et al (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 28(1):397–409

    Article  CAS  PubMed  Google Scholar 

  • Hagen CD, Lindemann MD, Purser KW (2000) Effect of dietary chromium tripicolinate on productivity of sows under commercial conditions. Swine Health Prod 8:59–63

    Google Scholar 

  • Hahn CJ, Evans GW (1975) Absorption of trace metals in the zinc-deficient rat. Am J Physiol 228:1020

    CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  • Hoopes LL (2002) Error catastrophe in mutant mitocondria. Sci Aging Knowledge Environ 45:vp6

    Google Scholar 

  • Hossain SM, Barreto SL, Silva CG (1998) Growth performance and carcass composition of broilers fed supplemental chromium from chromium yeast. Anim Feed Sci Technol 71:217–228

    Article  CAS  Google Scholar 

  • Hu G, Li P, Li Y, Wang T, Gao X, Zhang W, Jia G (2016a) Methylation levels of P16 and TP53 that are involved in DNA strand breakage of 16HBE cells treated by hexavalent chromium. Affiliations Toxicol Lett 249:15–21

    Article  CAS  Google Scholar 

  • Hu X, Chai J, Liu Y, Liu B, Yang B (2016b) Probing chromium(III) from chromium(VI) in cells by a fluorescent sensor. Spectrochim Acta A Mol Biomol Spectrosc 15:153

    Google Scholar 

  • Institute of Medicine, Food and Nutrition Board (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, DC

    Google Scholar 

  • Iskra R (2010) Some indexes of protein and lipid metabolism in blood of piglets at increased level of chromium in ration. Anim Biol 12(2):221–224

    Google Scholar 

  • Iskra R (2011) Functional content of antioxidant system and carbohydrate metabolism of rats blood under actions of inorganic and organic chromium conpounds. Visnyk of the Lviv University. Ser Biol 57:47–52

    Google Scholar 

  • Iskra R, Slivinska O (2015) The effect of chromium citrate on pro/antioxidant status of rats’ pancreas under the condition of streptozotocin-induced diabetes mellitus. Visnyk of the Lviv University. Ser Biol 70:25–30

    Google Scholar 

  • Iskra RJ, Vlizlo V, Fedoruk RS, Antoniak GL (2014) Chromium in the nutrition animals. Kiev Agrar Sci 312

    Google Scholar 

  • Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Bruce-Robertson A (1977) Chromium deficiency, glucose intolerance and neuropathy reversed by chromium supplementation in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr 30(4):531–538

    Article  CAS  PubMed  Google Scholar 

  • Jiang YF, Vaccaro MI, Fiedler F, Calvo EL, Iovanna JL (1999) Lipopolysaccharides induce p8 mRNA expression in vivo and in vitro. Biochem Biophys Res Commun 260(3):686–690

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Radhakrishnan MV (2015) Estimation of acute toxicity of chromium to the freshwater Catfish Clarias batrachus (Linn.). Int J Res Environ Sci (IJRES) 1(2):30–37

    Google Scholar 

  • Jorhem L, Sundstrom B (1993) Levels of lead, cadmium, zinc, copper, nickel, chromium, and cobalt in foods on the Swedish market 1983–1990. J Food Comp Anal 6:223

    Article  CAS  Google Scholar 

  • Katz AS, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publishers, New York, p 84

    Google Scholar 

  • Kim YH, Han IK, Choi YJ, Shin IS, Chae BJ, Kang TH (1996a) Effects of dietary levels of chromium picolinate on growth performance, carcass quality and serum traits in broiler chicks. Asian-Aust J Anim Sci 9:341–348

    Article  CAS  Google Scholar 

  • Kim YH, Han IK, Shin IS, Chae BJ, Kang TH (1996b) Effect of dietary excessive chromium picolinate on growth performance, nutrient utilizability and serum traits in broiler chicks. Asian-Aust J Anim Sci 9:349–354

    Article  CAS  Google Scholar 

  • Kim JD, Han IK, Chae BJ, Lee JH, Park JH, Kang CJ (1997) Effects of dietary chromium picolinate on performance, egg quality, serum traits and mortality rate of brown layers. Asian-Aust J Anim Sci 10:1–7

    Article  CAS  Google Scholar 

  • Kim DS, Kim TW, Kang JS (2004) Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats. J Trace Elem Med Biol 17:243–247

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Takahashi Y, Hirose Y, Nagao T, Tsuyuguchi M, Hashimoto M et al (2006) The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer 53(3):295–302

    Article  PubMed  Google Scholar 

  • Krejpcio Z (2001) Essentiality of chromium for human nutrition and health. Polish J Environ Stud 10(6):399–404

    CAS  Google Scholar 

  • Kumpulainen JT (1992) Chromium content of foods and diets. Biol Trace Elem Res 32:9

    Article  CAS  PubMed  Google Scholar 

  • Lefavi RG, Wilson GD, Keith RE, Blessing DL, Hames CG, McMillan JL (1993) Lipid-lowering effect of a dietary chromium (III)-nicotinic acid complex in male athletes. Nutr Res 13:239–249

    Article  CAS  Google Scholar 

  • Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X et al (2010) MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 30(22):5335–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lifschitz ML, Wallach S, Peabody RA (1980) Radiochromium distribution in thyroid and parathyroid deficiency. Am J Clin Nutr 33:57–62

    Article  CAS  PubMed  Google Scholar 

  • Lindemann MD (1996) Organic chromium—the missing link in farm animal nutrition. Feeding Times 1:8–16

    Google Scholar 

  • Lindemann MD, Cho JH, Wang MQ (2009) Chromium—an essential mineral. Revista Colombiana de Ciencias Pecuarias 22(3):339

    Google Scholar 

  • Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4

    Article  CAS  PubMed  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WTJ (1994) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 136(1):91–121

    Article  CAS  PubMed  Google Scholar 

  • Lukaski HC, Bolonchuk WW, Siders WA, Milne DB (1996) Chromium supplementation and resistence training: efects on body composition, strength, and trace element status of men. Am J Clin Nutr 63:954–965

    Article  CAS  PubMed  Google Scholar 

  • Madhavi V, Vijay Bhaskar Reddy A, Gangadhara Reddy K, Madhavi G, Vara Prasad TNVK (2013) An overview on research trends in remediation of chromium. Res J Recent Sci 2(1):71–83

    CAS  Google Scholar 

  • Masoro EJ, McCarter RJM, Katz MS, McMahan CA (1992) Dietary restriction alters characteristics of glucose fuel use. J Gerontol 47:B202–B208

    Article  CAS  PubMed  Google Scholar 

  • McKenney J (2004) New perspectives on the use of niacin in the treatment of lipid disorders. Arch Intern Med 164(7):697–705

    Article  CAS  PubMed  Google Scholar 

  • Medeiros MG, Rodrigues AS, Batoreu MC, Laires A, Zhitkovich A, Rueff J (2003) Biomarkers of chromium exposure and cytogenetic damage in leather tanning and welding industry workers. NATO Science Ser I 351:132–141

    CAS  Google Scholar 

  • Mertz W (1969) Chromium occurrence and function in biological sytems. Physiol Rev 49(2):163–239

    Article  CAS  PubMed  Google Scholar 

  • Mertz W (1975) Effects and metabolism of glucose tolerance factor. Nutr Rev 81:129

    Google Scholar 

  • Mertz W (1992) Chromium. History and nutritional importance. Biol Trace Elem Res 32:3

    Article  CAS  PubMed  Google Scholar 

  • Mertz W, Roginski EE (1969) Effects of chromium (III) supplementation on growth and survival under stress in rats fed low protein diets. J Nutr 97:531–536

    Article  CAS  PubMed  Google Scholar 

  • Mertz W, Roginski EE (1971) Chromium metabolis m: the glucose tolerance factor. In: Mertz W, Cornatzer WE (eds) Newer trace elements in nutrition. Dekker, New York, pp 123–153

    Google Scholar 

  • Mertz W, Toeppfer EW, Roginski EE, Polansky MM (1974) Present knowledge of the role of chromium. Fed Proc 33:2275

    CAS  PubMed  Google Scholar 

  • Moonsie-Shageer S, Mowat DN (1993) Effects of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves. J Anim Sci 71:232–238

    Article  CAS  PubMed  Google Scholar 

  • Morris BW, Gray TA, MacNeil S (1993a) Glucose-dependent uptake of chromium in human and rat insulin sensitive tissues. Clin Chem 84:477–482

    CAS  Google Scholar 

  • Morris BW, Macneill S, Stanley K, Gray TA, Fraser R (1993b) The inter relationship between insulin and chromium hyperinsulinemic clamps in healthy volun teers. J Endocrinol 139:989

    Article  Google Scholar 

  • Mossop RT (1983) Effects of chromium (III) on fasting glucose, cholesterol and cholesterol HDL levels in diabetics. Cent Afr J Med 29:80–82

    CAS  PubMed  Google Scholar 

  • National Research Council, Food and Nutrition Board (1989) Recommended dietary allowances, 10th edn. National Academy Press, Washington, DC

    Google Scholar 

  • Offenbacher EG, Rinko C, Pi-Sunyer FX (1985) The effects of inorganic chromium and brewer’s yeast on glucose tolerance, plasma lipids, and plasma chromium in elderly subjects. Am J Clin Nutr 42:454–461

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Taniyama M, Ohba H (1982) Mode of enhancement in ribonucleic acid synthesis directed by chromium (III)-bound deoxyribonucleic acid. J Inorg Biochem 17:41–49

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Susuki M, Ohba H (1983) Enhancement of ribonucleic acid synthesis by chromium (III) in mouse liver. J Inorg Biochem 19:95–103

    Article  CAS  PubMed  Google Scholar 

  • Okada S, Tsukada H, Tezuka M (1989) Effect of chromium (III) on nuclear RNA-synthesis. Biol Trace Elem Res 21:35–39

    Article  CAS  PubMed  Google Scholar 

  • Ott EA, Kivipelto J (1999) Influence of chromium tripicolinate on growth and glucose metabolism in yerling horses. J Anim Sci 77:3022–3030

    Article  CAS  PubMed  Google Scholar 

  • Pagan JD, Jackson SG, Duren SE (1995) The effect of chromium supplementation on metabolic response to exercise in thorough bred horses. In: Lyons P, Jacques KA (eds) Proceedings of Alltech’s 11th annual symposium, biotechnology in the feed industry. Nottingham University Press, London, pp 249–256

    Google Scholar 

  • Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Vet Med 52(1):1–18

    Article  CAS  Google Scholar 

  • Pechova A, Illek J, Sindelar M, Pavlata L (2002) Effects of chromium supplementation on growth rate and metabolism in fattening bulls. Acta Veterinaria Brno 71:535–541

    Article  CAS  Google Scholar 

  • Peng C, Wang X, Chen J, Jiao R, Wang L et al (2014) Biology of aging and role of dietary antioxidants. Biomed Res Int 2014:831841

    PubMed  PubMed Central  Google Scholar 

  • Perez-Benito JF (2006) Effects of chromium(VI) and vanadium(V) on the lifespan of fish. J Trace Elem Med Biol 20(3):161–170

    Article  CAS  PubMed  Google Scholar 

  • Peterson-Roth E, Reynolds M, Quievryn G, Zhitkovich A (2005) Mismatch repair proteins are activators of toxic responses to chromium-DNA damage. Mol Cell Biol 25(9):3596–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit A, Mwale F, Tkaczyk C, Antoniou J, Zukor DJ, Huk OL (2005) Induction of protein oxidation by cobalt and chromium ions in human U937 macrophages. Biomaterials 26:4416–4422

    Article  CAS  PubMed  Google Scholar 

  • Petrilli FL, Rossi GA, Camoirano A et al (1986) Metabolic reduction of chromium by alveolar macrophages and its relationships to cigarette smoke. J Clin Invest. 77:1917–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowska A, Bartnik E (2014) The role of reactive oxygen species and mitochondria in aging. Postepy Biochem 60(2):240–247

    CAS  PubMed  Google Scholar 

  • Potter JF, Levin P, Anderson RA, Freiberg JM, Andres R (1985) Glucose metabolism in glucose-intolerant older people during chromium supplementation. Metabolism, from dog liver. Environ Res 32:228–239

    Google Scholar 

  • Press RI, Geller J (1990) The effect of chromium picolinate on serum cholesterol and apolipoprotein fraction in human subjects. West J Med 152:41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinowitz MB, Gonick HC, Levine SR, Davidson MB (1983) Clinical trial of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men. Biol Trace Elem Res 5:449–466

    Article  CAS  PubMed  Google Scholar 

  • Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Report of the 1989 Consultation of the FAO European Cooperative Research Network on Trace Elements. Lausanne, September 5–9, FAO, Rome, 1989

    Google Scholar 

  • Reynolds M, Zhitkovich A (2007) Cellular vitamin C increases chromate toxicity via a death program requiring mismatch repair but not p53. Carcinogenesis 28(7):1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Riales R, Albrink JM (1981) Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high density lipoprotein of adult men. Am J Clin Nutr 34:2670–2678

    Article  CAS  PubMed  Google Scholar 

  • Roginski EF, Mertz W (1969) Effects of chromium (III) supplementation on glucose and amino acid metabolism in rats fed a low protein diet. J Nutr 97:525–530

    Article  CAS  PubMed  Google Scholar 

  • Roussel AM, Zouari N (1998) Antioxidant effect of zinc and chromium in people with type 2 diabetes mellitus. J Am Coll Nutr 17:504

    Google Scholar 

  • Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, Rokeach LA (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLOS One. https://doi.org/10.1371/journal.pgen.1000408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44

    Article  PubMed  Google Scholar 

  • Samitz MH (1970) Ascorbic acid in the prevention and treatment of toxic effects from chromates. Acta Derm Venereol 50:59–64

    CAS  PubMed  Google Scholar 

  • Sargeant T, Lim TH, Jenson RL (1979) Reduced chromium retention in patients with hemochromatosis: a possible basis of hemochromatotic diabetes. Metabolism 28:70–79

    Article  Google Scholar 

  • Saryan LA, Reedy M (1988) Chromium determinations in a case of chronic acid ingestion. J Anal Toxicol 12:162–164

    Article  CAS  PubMed  Google Scholar 

  • Sayato Y, Nakamura K, Matsui S, Ando M (1980) Absorption of trace metals in the zinc-deficiet rats. J Pharmodyn 3:17

    CAS  Google Scholar 

  • Schnekenburger M, Talaska G, Puga A (2007) Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol 27(20):7089–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrauzer GN, Shresta KP, Molenaar TB, Mead S (1986) Effects of chromium supplementation on feedenergy utilization and the trace element composition in the liver and heart of glucose-exposed young mice. Biol Trace Elem Res 9:79–87

    Article  CAS  Google Scholar 

  • Schroeder HA (1968) The role of chromium in mammalian nutrition. Am J Clin Nutr 21:230–244

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HA, Vinton WH, Balassa JJ (1963) Effects of chromium, cadmium and lead on the growth and survival of rats. J Nutr 80:48–54

    CAS  PubMed  Google Scholar 

  • Schwarz K, Mertz Z (1957) A glucose tolerance factor and its differentiation from factor 3. Arch Biochem Biophys 72:515–518

    Article  CAS  PubMed  Google Scholar 

  • Schwarz K, Mertz Z (1959) Chromium(III) and glucose tolerance factor. Arch Biochem Biophys 85:292–295

    Article  CAS  PubMed  Google Scholar 

  • Shinde Urmila A, Sharma G, Xu YJ, Dhalla NS, Goyal RK (2004) Anti-diabetic activity and mechanism of action of chromium chloride. Exp Clin Endocrinol Diabetes 112(5):248–252

    Article  CAS  PubMed  Google Scholar 

  • Simonoff M, Shapcott D, Alameddine S, Sutter-Dub MT, Simonoff G (1992) The isolation of glucose tolerance factors from Brewer’s yeast and their relation to chromium. Biol Trace Elem Res 32:25–38

    Article  CAS  PubMed  Google Scholar 

  • Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25(21):9175–9188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JS, Kim YS, Kim DK, Park SI, Jang SJ (2012) Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol Int 62(3):182–190

    Article  PubMed  Google Scholar 

  • Stahlhut HS, Whisnant CS, Spears JW (2006) Effect of chromium supplementation and copper status on performance and reproduction of beef cows. Anim Feed Sci Technol 128:266–275

    Article  CAS  Google Scholar 

  • Stearns DM, Kennedy LJ, Courtney KD, Giangrande PH, Phieffer LS, Wetterhahn KE (1995) Reduction of chromium (VI) by ascorbate leads to chromium DNA-binding and DNA strand breaks in vitro. Biochemistry 34:910–919

    Article  CAS  PubMed  Google Scholar 

  • Stoecker BJ (2001) Chromium. In: Present knowledge in nutrition, 8th edn. ILSI Press, Washington, DC, pp 366–372

    Google Scholar 

  • Subiyatno A, Mowat DN, Yang WZ (1996) Metabolite and hormonal responses to glucose or propionate infusions in periparturient dairy cows supplemented with chromium. J Dairy Sci 79:1436–1445

    Article  CAS  PubMed  Google Scholar 

  • Sumrall KH, Vincent JB (1997) Is glucose tolerance factor an artefact produced by acid hydrolysis of low molecular-weight chromium-binding substance? Polyhedron 16:4171–4177

    Article  CAS  Google Scholar 

  • Sun YJ, Ramirez J, Woski SA, Vincent JB (2000) The binding of trivalent chromium to low molecular weight chromium-binding substance (LMWCr) and the transfer of chromium from transferrin and chromium picolinate to LMWCr. J Biol Inorg Chem 5:129–136

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhou X, Chen H, Li Q, Costa M. (2009). Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium. Toxicol Appl Pharmacol 237(3):258–266. Epub 2009/04/21. S0041-008X(09)00152-5 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szoke E, Shrayyef MZ, Messing S, Woerle HJ, van Haeften TW, Meyer C, Mitrakou A, Pimenta W, Gerich JE (2008) Effect of aging on glucose homeostasis. Accelerated deterioration of -cell function in individuals with impaired glucose tolerance. Diabetes Care 31:539–543

    Article  CAS  PubMed  Google Scholar 

  • Taieb D, Malicet C, Garcia S, Rocchi P, Arnaud C, Dagorn JC et al (2005) Inactivation of stress protein p8 increases murine carbon tetrachloride hepatotoxicity via preserved CYP2E1 activity. Hepatology 42(1):176–182

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A et al (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25(15):6798–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Kondo K, Hirose T, Nakagawa H, Tsuyuguchi M, Hashimoto M et al (2005) Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol Carcinog 42(3):150–158

    Article  CAS  PubMed  Google Scholar 

  • Taton J (1993) Diabetologia praktyczna. PZWL, Warszawa, p 458

    Google Scholar 

  • Turkoski BB (2004) An ounce of prevention. Drugs used to treat hyperlipidemia (Part 1). Orthop Nurs 23(1):58–61

    Article  PubMed  Google Scholar 

  • Tuzcu A, Bahceci M, Dursun M, Parmaksiz Y, Ertem M, Dalgic A, Turgut C, Kale E (2004) Can long-term exposure to chromium improve insulin sensitivity in chromium mine workers? J Trace Elem Exp Med 17:55–63

    Article  CAS  Google Scholar 

  • Urberg M, Zemmel MB (1987) Evidence for synergism between chromium and nicotinic acid in the elderly humans. Metabolism 36(9):896

    Article  CAS  PubMed  Google Scholar 

  • Uusitupa MIJ, Mykkanen L, Siitonen O, Laakso M, Sarlund H (1992) Chromium supplementation in impaired glucose tolerance of elderly: effects on blood glucose, plasma insulin, C-peptide, and lipid levels. Br J Nutr 68:209–216

    Article  CAS  PubMed  Google Scholar 

  • Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B et al (2008) Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14(22):7237–7245

    Article  CAS  Google Scholar 

  • Vincent JB (2000) The biochemistry of chromium. J Nutr 130:715–718

    Article  CAS  PubMed  Google Scholar 

  • Vincent JB (2007) The nutritional biochemistry of chromium(III). Elsevier Science, Amsterdam, 292p

    Chapter  Google Scholar 

  • Vinson JA, Mandarano MA, Shuta DL, Bagchi M, Bagchi D (2002) Beneficial effects of a novel IH636 grape seed proanthocyanidin extract and a niacin-bound chromium in a hamster atherosclerosis model. Mol Cell Biochem 240:99–103

    Article  CAS  PubMed  Google Scholar 

  • Wada O, Wu GY, Yamamoto A, Manabe S, Ono T (1983) Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver. Environ Res 32:228–239

    Article  CAS  PubMed  Google Scholar 

  • Wallach S (1985) Clinical and biochemical aspects of chromium deficiency. J Am Coll Nutr 4:107–120

    Article  CAS  PubMed  Google Scholar 

  • Wei YD, Tepperman K, Huang MY, Sartor MA, Puga A (2004) Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem 279(6):4110–4119

    Article  CAS  PubMed  Google Scholar 

  • Wenk C, Gebert S, Pfirter H (1995) Chromium supplements in the feed for growing pigs: influence on growth and meat quality. Arch Animal Nutr 48:71–81

    CAS  Google Scholar 

  • WHO (1996) Trace elements in human nutrition and human health. World Health Organization, Geneva, p 361

    Google Scholar 

  • Wilbur S, Abadin H, Fay M, Yu D, Tencza B, Ingerman L, Klotzbach J, James S (2012) Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry (US), Atlanta (GA), 592p

    Google Scholar 

  • Wrobel K, Geray-Sevilla ME, Malacara JM, Fajardo ME, Wrobel K (1999) Effect of chromium on glucose tolerance serum cholesterol and triglicerides in occupational exposure to trivalent species in type 2 diabetic patients and control subjects. Trace Elem Electrolytes 16(4):199

    CAS  Google Scholar 

  • Wu LE, Levina A, Harris HH, Cai Z, Lai B, Vogt S, James DE, Lay PA (2016) Carcinogenic chromium(VI) compounds formed by intracellular oxidation of chromium(III) dietary supplements by adipocytes. Angew Chem Int Ed Engl 55(5):1742

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Wada O, Ono T (1983) Distribution and chromium-binding capacity of a low-molecular weight, chromium-binding substance in mice. J Inorg Biochem 22:91–102

    Article  Google Scholar 

  • Yamamoto A, Wada O, Ono T (1987) Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem 165:627–631

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Wada O, Manabe S (1989) Evidence that chromium is an essential factor for biological activity of low molecular weight chromium-binding substance. Biochem Biophys Res Commun 163:189–193

    Article  CAS  PubMed  Google Scholar 

  • Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol 18:3–11

    Article  CAS  PubMed  Google Scholar 

  • Zhitkovich A, Voitkun V, Costa M (1996) Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro: importance of trivalent chromium and the phosphate group. Biochemistry 35(22):7275–7282

    Article  CAS  PubMed  Google Scholar 

  • Zinke I, Schutz CS, Katzenberger JD, Bauer M, Pankratz MJ (2002) Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J 21(22):6162–6173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslana Iskra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iskra, R., Antonyak, H. (2018). Chromium in Health and Longevity. In: Malavolta, M., Mocchegiani, E. (eds) Trace Elements and Minerals in Health and Longevity. Healthy Ageing and Longevity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-03742-0_5

Download citation

Publish with us

Policies and ethics