Skip to main content

Estimating the Complexity of the Cerebral Cortex Folding with a Local Shape Spectral Analysis

  • Chapter
  • First Online:
Vertex-Frequency Analysis of Graph Signals

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

The human cerebral cortex is a highly folded structure that can be modeled by a surface extracted in vivo from magnetic resonance imaging data. The folding complexity of this surface has been shown to be a relevant biological measurement, often estimated locally and referred to by the term “gyrification index” (GI). There is, however, no universal agreement on the notion of surface complexity and various methods have been presented that evaluate different aspects of cortical folding. In this chapter, we show how a local spectral analysis of the cortical surface mean curvature can address this problem and provide two well-defined gyrification indices. Specifically, we extended the concept of graph windowed Fourier transform to the framework of surfaces modeled by triangular meshes. The intrinsic nature of the method allows us to compute the folding complexity at different spatial scales. We show that our approach overcomes a major flaw in other more classical GI estimators, namely the impossibility to differentiate deep cortical folds from shallower but more oscillating ones. We applied our method on synthetic data as well as on a database of 124 healthy adult subjects and showed that it verifies important properties and capture important aspects of cortical gyrification. A comparison with other GI definitions is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Armstrong, A. Schleicher, H. Omran, M. Curtis, K. Zilles, The ontogeny of human gyrification. Cereb. Cortex 5(1), 56–63 (1995)

    Article  Google Scholar 

  2. W. Welker, Why does cerebral cortex fissure and fold?, in Cerebral Cortex, ed. by E.G. Jones, A. Peters, no. 8B in Cerebral Cortex (Springer, Berlin, 1990), pp. 3–136

    Google Scholar 

  3. P. Yu, P.E. Grant, Y. Qi, X. Han, F. Segonne, R. Pienaar, E. Busa, J. Pacheco, N. Makris, R.L. Buckner, P. Golland, B. Fischl, Cortical surface shape analysis based on spherical wavelets. IEEE Trans. Med. Imaging 26(4), 582–597 (2007)

    Article  Google Scholar 

  4. J. Lefèvre, D. Germanaud, J. Dubois, F. Rousseau, I. de Macedo Santos, H. Angleys, J.-F. Mangin, P. Höppi, N. Girard, F. De Guio, Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns? Cereb. Cortex, 1–13 (2015)

    Google Scholar 

  5. R. Toro, M. Perron, B. Pike, L. Richer, S. Veillette, Z. Pausova, T. Paus, Brain size and folding of the human cerebral cortex. Cereb. Cortex 18(10), 2352–2357 (2008)

    Article  Google Scholar 

  6. M. Schaer, M.B. Cuadra, L. Tamarit, F. Lazeyras, S. Eliez, J. Thiran, A surface-based approach to quantify local cortical gyrification. IEEE Trans. Med. Imaging 27, 161–170 (2008)

    Article  Google Scholar 

  7. G. Li, L. Wang, F. Shi, A.E. Lyall, W. Lin, J.H. Gilmore, D. Shen, Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J. Neurosci. 34, 4228–4238 (2014)

    Article  Google Scholar 

  8. T. White, C.C. Hilgetag, Gyrification and neural connectivity in schizophrenia. Dev. Psychopathol. 23(1), 339–352 (2011)

    Article  Google Scholar 

  9. D. Germanaud, J. Lefèvre, C. Fischer, M. Bintner, A. Curie, V. des Portes S. Eliez, M. Elmaleh-Bergès, D. Lamblin, S. Passemard, G. Operto, M. Schaer, A. Verloes, R. Toro, J.F. Mangin, L. Hertz-Pannier, Simplified gyral pattern in severe developmental microcephalies? new insights from allometric modeling for spatial and spectral analysis of gyrification. NeuroImage 102, Part 2, 317–331 (2014)

    Google Scholar 

  10. J.S. Shimony, C.D. Smyser, G. Wideman, D. Alexopoulos, J. Hill, J. Harwell, D. Dierker, D.C. Van Essen, T.E. Inder, J.J. Neil, Comparison of cortical folding measures for evaluation of developing human brain. NeuroImage 125, 780–790 (2016)

    Article  Google Scholar 

  11. K. Zilles, E. Armstrong, A. Schleicher, H.J. Kretschmann, The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 179, 173–9 (1988)

    Article  Google Scholar 

  12. T.W.J. Moorhead, J.M. Harris, A.C. Stanfield, D.E. Job, J.J.K. Best, E.C. Johnstone, S.M. Lawrie, Automated computation of the gyrification index in prefrontal lobes: methods and comparison with manual implementation. NeuroImage 31(4), 1560–1566 (2006)

    Article  Google Scholar 

  13. E. Lebed, C. Jacova, L. Wang, M.F. Beg, Novel surface-smoothing based local gyrification index. IEEE Trans. Med. Imaging 32(4), 660–669 (2013)

    Article  Google Scholar 

  14. S. Su, T. White, M. Schmidt, C.-Y. Kao, G. Sapiro, Geometric computation of human gyrification indexes from magnetic resonance images. Hum. Brain Mapp. 34(5), 1230–1244 (2013)

    Article  Google Scholar 

  15. E. Luders, P.M. Thompson, K.L. Narr, A.W. Toga, L. Jancke, C. Gaser, A curvature-based approach to estimate local gyrification on the cortical surface. NeuroImage 29(4), 1224–1230 (2006)

    Article  Google Scholar 

  16. S.H. Kim, I. Lyu, V.S. Fonov, C. Vachet, H.C. Hazlett, R.G. Smith, J. Piven, S.R. Dager, R.C. Mckinstry, J.R. Pruett Jr., A.C. Evans, D.L. Collins, K.N. Botteron, R.T. Schultz, G. Gerig, M.A. Styner, Development of cortical shape in the human brain from 6 to 24 months of age via a novel measure of shape complexity. NeuroImage 135, 163–176 (2016)

    Article  Google Scholar 

  17. R. Shishegar, J.H. Manton, D.W. Walker, J.M. Britto, L.A. Johnston, Quantifying gyrification using Laplace Beltrami eigenfunction level-sets, in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1272–1275, 2015

    Google Scholar 

  18. M. Meyer, M. Desbrun, P. Schröder, A. Barr, Discrete Differential-Geometry Operators for Triangulated 2-Manifolds, Book section 2. Mathematics and Visualization (Springer, Berlin, 2003), pp. 35–57

    Google Scholar 

  19. S.P. Awate, P.A. Yushkevich, Z. Song, D.J. Licht, J.C. Gee, Cerebral cortical folding analysis with multivariate modeling and testing: studies on gender differences and neonatal development. NeuroImage 53(2), 450–459 (2010)

    Article  Google Scholar 

  20. H. Zhang, O. van Kaick, R. Dyer, Spectral methods for mesh processing and analysis, in Proceedings of Eurographics State-of-the-art Report (2007), pp. 1–22

    Google Scholar 

  21. M. Berger, A Panoramic View of Riemannian Geometry (Springer, Berlin, 2003)

    Book  Google Scholar 

  22. M. Reuter, S. Biasotti, D. Giorgi, G. Patane, M. Spagnuolo, Discrete Laplace-Beltrami operators for shape analysis and segmentation. Comput. Graph. 33, 381–390 (2009)

    Article  Google Scholar 

  23. D.K. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30, 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  24. D. Gabor, Theory of communication. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  25. D.I. Shuman, B. Ricaud, P. Vandergheynst, Vertex-frequency analysis on graphs. Appl. Comput. Harmon. Anal. 40(2), 260–291 (2016)

    Article  MathSciNet  Google Scholar 

  26. B. Levy, Laplace-Beltrami eigenfunctions towards an algorithm that “Understands” geometry, in IEEE International Conference on Shape Modeling and Applications, 2006. SMI 2006 (2006), pp. 13–13

    Google Scholar 

  27. N. Peinecke, F.-E. Wolter, M. Reuter, Laplace spectra as fingerprints for image recognition. Comput. Aided Des. 39(6), 460–476 (2007)

    Article  Google Scholar 

  28. M. Tan, A. Qiu, Spectral Laplace-Beltrami wavelets with applications in medical images. IEEE Trans. Med. Imaging 34(5), 1005–1017 (2015)

    Article  Google Scholar 

  29. G. Kaiser, Windowed fourier transforms, in A Friendly Guide to Wavelets. Modern Birkhuser Classics (Birkhauser, Boston, 2011), pp. 44–59

    Google Scholar 

  30. S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, 3rd edn. (Academic, New York, 2008)

    Google Scholar 

  31. D. Grebenkov, B. Nguyen, Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55(4), 601–667 (2013)

    Article  MathSciNet  Google Scholar 

  32. A. Golbabai, H. Rabiei, Hybrid shape parameter strategy for the RBF approximation of vibrating systems. Int. J. Comput. Math. 89(17), 2410–2427 (2012)

    Article  MathSciNet  Google Scholar 

  33. M. Reuter, F.-E. Wolter, N. Peinecke, Laplace Beltrami spectra as Shape-DNA of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  34. C. Wachinger, P. Golland, W. Kremen, B. Fischl, M. Reuter, BrainPrint: a discriminative characterization of brain morphology. NeuroImage 109, 232–248 (2015)

    Article  Google Scholar 

  35. G. Auzias, J. Lefèvre, A.L. Troter, C. Fischer, M. Perrot, J. Régis, O. Coulon, Model-driven harmonic parameterization of the cortical surface: HIP-HOP. IEEE Trans. Med. Imaging 32(5), 873–887 (2013)

    Article  Google Scholar 

  36. D. Germanaud, J. Lefèvre, R. Toro, C. Fischer, J. Dubois, L. Hertz-Pannier, J.F. Mangin, Larger is twistier: spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism. NeuroImage 63, 1257–72 (2012)

    Article  Google Scholar 

  37. K. Im, J.-M. Lee, O. Lyttelton, S.H. Kim, A.C. Evans, S.I. Kim, Brain size and cortical structure in the adult human brain. Cereb. Cortex 18(9), 2181–2191 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Labex Archimède (http://labex-archimede.univ-amu.fr/). The authors would like to thank the OASIS project for providing and sharing MRI databases of the brain. The OASIS project was supported by NIH grants P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, and R01MH56584.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Coulon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabiei, H., Richard, F., Coulon, O., Lefèvre, J. (2019). Estimating the Complexity of the Cerebral Cortex Folding with a Local Shape Spectral Analysis. In: Stanković, L., Sejdić, E. (eds) Vertex-Frequency Analysis of Graph Signals. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-03574-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03574-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03573-0

  • Online ISBN: 978-3-030-03574-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics