Skip to main content

60 GHz LNA Design with Inductive Source Degeneration in 65 nm CMOS Technology

  • Conference paper
  • First Online:
International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018 (ICICI 2018)

Abstract

This paper presents source degenerated cascode 60 GHz Low Noise Amplifier (LNA) is modelled in ADS and its performance is measured by computing Noise Figure (NF) and gain from simulation waveforms. Parameters such as LNA linearity and stability is determined and designed to be within permissible limits. The designed LNA is optimized for its area with 30% reduction. The measured result of the designed LNA shows 19.48 dB gain, 4.7 dB NF and IIP3 of –10 dBm. The Figure of Merit (FoM) characterized as an element of the NF and IIP3 is 17, which is the best outcome among past LNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Byeon, C.W., Yoon, C.H., Park, C.S.: A 67-mW 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications. IEEE Trans. Microw. Theory Techn. 61(9), 3391–3401 (2013)

    Article  Google Scholar 

  2. Okada, K., et al.: A full 4-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with low-power analog and digital baseband circuitry. In: IEEE ISSCC Digest of Technical Papers, pp. 218–220 (2012)

    Google Scholar 

  3. Razavi, B.: Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans. Circuits Syst. I, Reg. Papers 56(1), 4–16 (2009)

    Article  MathSciNet  Google Scholar 

  4. Valdes-Garcia, A., et al.: A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 45(12), 2757–2773 (2010)

    Article  Google Scholar 

  5. Yao, T., et al.: Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE J. Solid-State Circuits 42(5), 1044–1057 (2007)

    Article  Google Scholar 

  6. Gordon, M.Q., Yao, T., Voinigescu, S.P.: 65-GHz receiver in SiGeBiCMOS using monolithic inductors and transformers. In: Si Monolithic Integrated Circuits in RF Systems, pp. 265–268 (2007)

    Google Scholar 

  7. Floyd, B.A., et al.: SiGe bipolar transceiver circuits operating at 60 GHz. IEEE J. Solid State Circuits 40(1), 156–167 (2005)

    Article  Google Scholar 

  8. Alldred, D., Cousins, B., Voinigescu, S.P., Rogers, E.S.: A 1.2 V, 60-GHz radio receiver with on-chip transformers and inductors in 90-nm CMOS. In: IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 51–54 (2006)

    Google Scholar 

  9. Doan, C.H., Emami, S., Niknejad, A.M., Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits 40(1), 144–155 (2005)

    Article  Google Scholar 

  10. Razavi, B.: A 60-GHz direct-conversion CMOS receiver. In: IEEE International Solid-State Circuits Conference. Digest Technical Papers, vol. 1, pp. 400–606 (2005)

    Google Scholar 

  11. Heydari, B., Bohsali, M., Adabi, E., Niknejad, A.M.: Low-power mm-wave components up to 104 GHz in 90 nm CMOS. In: IEEE International Solid-State Circuits Conference (ISSCC) Digest Technical Papers, pp. 200–597 (2007)

    Google Scholar 

  12. Chikkanagouda, R., Cyril Prasanna Raj, P.: Design of cascode LNA with inductive source degeneration for 60 GHz applications. In: International Conference on Materials, Applied Physics and Engineering (ICMAE), Indore (2018)

    Google Scholar 

  13. Tsai, M.-H., et al.: Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 61(1), 553–561 (2013)

    Article  Google Scholar 

  14. Hsieh, H.-H., et al.: 60 GHz High-Gain Low-Noise Amplifiers with a Common-Gate Inductive Feedback in 65 nm CMOS. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 1–4 (2011)

    Google Scholar 

  15. Fanaro, M., Olakede, S.S., Sinha, S.: Investigation of 60 GHz LNA with estimated S11 values based on mathematical model and numerical solution. Rom. J. Inf. Sci. Technol. 19(3), 239–254 (2016)

    Google Scholar 

  16. Liang, C.K., Razavi, B.: Systematic transistor and inductor modeling for millimeter-wave design. IEEE J. Solid-State Circuits 44(2), 450–457 (2009)

    Article  Google Scholar 

  17. Dickson, T.O., et al.: The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks. IEEE J. Solid-State Circuits 41(1), 1830–1845 (2006)

    Article  Google Scholar 

  18. Niknejad, A.M.: MOSFET LNA Design. University of California, Berkeley (2005). http://rfic.eecs.berkeley.edu/~niknejad/ee142_fa05lects/pdf/lect14.pdf

  19. Voinigescu, S.P., et al.: RF and millimeter-wave IC design in the nano-(Bi)CMOS era. Si-Based Semiconductor Components for Radio-Frequency Integrated Circuits (RFIC) (2006)

    Google Scholar 

  20. Predictive Technology Model, Latest Models. http://ptm.asu.edu/modelcard/2006/65nm_bulk.pm

  21. International Technology Roadmap for Semiconductors (ITRS), 2005 Edn. (2005). https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Chikkanagouda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chikkanagouda, R., Cyril Prasanna Raj, P. (2019). 60 GHz LNA Design with Inductive Source Degeneration in 65 nm CMOS Technology. In: Hemanth, J., Fernando, X., Lafata, P., Baig, Z. (eds) International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018. ICICI 2018. Lecture Notes on Data Engineering and Communications Technologies, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-03146-6_40

Download citation

Publish with us

Policies and ethics