Skip to main content

Posterior Uveitis: Role of Imaging Modalities

  • Chapter
  • First Online:
Posterior Uveitis

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 529 Accesses

Abstract

With the development of new imaging technologies and modalities, clinicians have novel information available to them in the diagnosis and treatment of intraocular inflammatory diseases. This makes understanding the different imaging modalities an important adjunct to the clinical exam. The goal of this chapter is to review the principles underlying these imaging technologies and help the clinician understand how to utilize them appropriately. We will discuss traditional photography and angiography, but the emphasis of this chapter will be on newer technologies. These include ultra-widefield imaging, autofluorescence, optical coherence tomography (OCT), and advanced OCT applications such as en face imaging and OCT-angiography (OCT-A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Laey JJ. Fluorescein angiography in posterior uveitis. Int Ophthalmol Clin. 1995;35:33–58.

    Article  Google Scholar 

  2. Ciardella AP, Prall FR, Borodoker N, Cunningham ET. Imaging techniques for posterior uveitis. Curr Opin Ophthalmol. 2004;15:519–30.

    Article  Google Scholar 

  3. Gupta V, Al-Dhibi HA, Arevalo JF. Retinal imaging in uveitis. Saudi J Ophthalmol. 2014;28:95–103. https://doi.org/10.1016/j.sjopt.2014.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Manivannan A, Plskova J, Farrow A, et al. Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol. 2005;140:525–7. https://doi.org/10.1016/j.ajo.2005.02.055.

    Article  PubMed  Google Scholar 

  5. Leder HA, Campbell JP, Sepah YJ, et al. Ultra-wide-field retinal imaging in the management of non-infectious retinal vasculitis. J Ophthalmic Inflamm Infect. 2013;3:30. https://doi.org/10.1186/1869-5760-3-30.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jorzik JJ, Bindewald A, Dithmar S, Holz FG. Digital simultaneous fluorescein and indocyanine green angiography, autofluorescence, and red-free imaging with a solid-state laser-based confocal scanning laser ophthalmoscope. Retina. 2005;25:405–16.

    Article  Google Scholar 

  7. Bischoff PM, Niederberger HJ, Török B, Speiser P. Simultaneous indocyanine green and fluorescein angiography. Retina. 1995;15:91–9.

    Article  CAS  Google Scholar 

  8. Bartsch DU, Weinreb RN, Zinser G, Freeman WR. Confocal scanning infrared laser ophthalmoscopy for indocyanine green angiography. Am J Ophthalmol. 1995;120:642–51.

    Article  CAS  Google Scholar 

  9. Herbort CP. Fluorescein and indocyanine green angiography for uveitis. Middle East Afr J Ophthalmol. 2009;16:168–87. https://doi.org/10.4103/0974-9233.58419.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yannuzzi LA. Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol. 2011;151:745–51.e1. https://doi.org/10.1016/j.ajo.2011.01.043.

    Article  PubMed  Google Scholar 

  11. Fardeau C, Herbort CP, Kullmann N, et al. Indocyanine green angiography in birdshot chorioretinopathy. Ophthalmology. 1999;106:1928–34. https://doi.org/10.1016/S0161-6420(99)90403-7.

    Article  CAS  PubMed  Google Scholar 

  12. Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease. Int J Retina Vitr. 2016;2:12. https://doi.org/10.1186/s40942-016-0035-x.

    Article  Google Scholar 

  13. Durrani K, Foster CS. Fundus autofluorescence imaging in posterior uveitis. Semin Ophthalmol. 2012;27:228–35. https://doi.org/10.3109/08820538.2012.711414.

    Article  PubMed  Google Scholar 

  14. Cideciyan AV, Aleman TS, Swider M, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004;13:525–34. https://doi.org/10.1093/hmg/ddh048.

    Article  CAS  PubMed  Google Scholar 

  15. Knickelbein JE, Sen HN. Multimodal imaging of the white dot syndromes and related diseases. J Clin Exp Ophthalmol. 2016;7(3):570.

    Article  Google Scholar 

  16. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  Google Scholar 

  17. Wojtkowski M, Bajraszewski T, Gorczyńska I, et al. Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol. 2004;138:412–9. https://doi.org/10.1016/j.ajo.2004.04.049.

    Article  PubMed  Google Scholar 

  18. Li Y, Lowder C, Zhang X, Huang D. Anterior chamber cell grading by optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:258–65. https://doi.org/10.1167/iovs.12-10477.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma S, Lowder CY, Vasanji A, et al. Automated analysis of anterior chamber inflammation by spectral-domain optical coherence tomography. Ophthalmology. 2015;122:1464–70. https://doi.org/10.1016/j.ophtha.2015.02.032.

    Article  PubMed  Google Scholar 

  20. Keane PA, Karampelas M, Sim DA, et al. Objective measurement of vitreous inflammation using optical coherence tomography. Ophthalmology. 2014;121:1706–14. https://doi.org/10.1016/j.ophtha.2014.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tran THC, de Smet MD, Bodaghi B, et al. Uveitic macular oedema: correlation between optical coherence tomography patterns with visual acuity and fluorescein angiography. Br J Ophthalmol. 2008;92:922–7. https://doi.org/10.1136/bjo.2007.136846.

    Article  CAS  PubMed  Google Scholar 

  22. van Velthoven MEJ, Verbraak FD, Yannuzzi LA, et al. Imaging the retina by en face optical coherence tomography. Retina. 2006;26:129–36.

    Article  Google Scholar 

  23. Kraus MF, Liu JJ, Schottenhamml J, et al. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomed Opt Express. 2014;5:2591–613. https://doi.org/10.1364/BOE.5.002591.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang Q, Huang Y, Zhang T, et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking. J Biomed Opt. 2015;20:066008. https://doi.org/10.1117/1.JBO.20.6.066008.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032.

    Article  PubMed  Google Scholar 

  26. Baltmr A, Lightman S, Tomkins-Netzer O. Examining the choroid in ocular inflammation: a focus on enhanced depth imaging. J Ophthalmol. 2014;2014:459136. https://doi.org/10.1155/2014/459136.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Böni C, Thorne JE, Spaide RF, et al. Choroidal findings in eyes with birdshot chorioretinitis using enhanced-depth optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57:OCT591–9. https://doi.org/10.1167/iovs.15-18832.

    Article  CAS  PubMed  Google Scholar 

  28. Z hang J, Rao B, Chen Z. Swept source based Fourier domain functional optical coherence tomography. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2005;7:7230–3. https://doi.org/10.1109/IEMBS.2005.1616179.

    Article  Google Scholar 

  29. Pichi F, Sarraf D, Arepalli S, et al. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res. 2017;59:178–201. https://doi.org/10.1016/j.preteyeres.2017.04.005.

    Article  PubMed  Google Scholar 

  30. Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121:1435–44. https://doi.org/10.1016/j.ophtha.2014.01.034.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethical Requirements

Phuc V. Le declares no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc V. Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le, P.V. (2019). Posterior Uveitis: Role of Imaging Modalities. In: Rao, N., Schallhorn, J., Rodger, D. (eds) Posterior Uveitis. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-03140-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03140-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03139-8

  • Online ISBN: 978-3-030-03140-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics