Skip to main content

Overview on the Systematics of Biotoxins as Threat Agents

  • Chapter
  • First Online:
Defense Against Biological Attacks
  • 693 Accesses

Abstract

Biological threat agents are usually considered as pathogens like bacteria or viruses that can be used to harm people, animals or plants. But these agents also include a very special group of agents which are not infectious and combine ‘biological’ as well as ‘chemical’ characteristics: biotoxins. These molecules are at a hermaphroditic position, on the borderline between ‘synthetic’ and ‘natural’.

Around 20 biotoxins and biotoxins groups out of several millions are considered as agents with mass casualty potential by different international committees and boards. These are to be described here. The aim of this chapter on the one hand is to offer an overview on the systematics of biotoxins and on the other hand to raise awareness for the potential of some biotoxins for biowarfare and bioterrorism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aas P. The threat of mid-spectrum chemical warfare agents. Prehosp Disaster Med. 2003;18(4):306–12.

    Article  PubMed  Google Scholar 

  2. Franz DR. Defense against toxin weapons. In: Medical aspects of chemical and biological warfare. US Army Medical Research Institute of Infectious Diseases; 1994. p. 603–19.

    Google Scholar 

  3. Patocka J, Streda L. Protein biotoxins of military significance. Acta Medica (Hradec Kralove). 2006;49(1):3–11.

    Article  CAS  Google Scholar 

  4. Madsen JM. Toxins as weapons of mass destruction. A comparison and contrast with biological-warfare and chemical-warfare agents. Clin Lab Med. 2001;21(3):593–605.

    Article  CAS  PubMed  Google Scholar 

  5. Pitschmann V. Overall view of chemical and biochemical weapons. Toxins (Basel). 2014;6(6):1761–84. https://doi.org/10.3390/toxins6061761.

    Article  CAS  Google Scholar 

  6. Pitschmann V, Hon Z. Military importance of natural toxins and their analogs. Molecules. 2016;21(5) https://doi.org/10.3390/molecules21050556.

    Article  PubMed Central  Google Scholar 

  7. Anderson PD. Bioterrorism: toxins as weapons. J Pharm Pract. 2012;25(2):121–9. https://doi.org/10.1177/0897190012442351.

    Article  PubMed  Google Scholar 

  8. Franz DR, Zajtchuk R. Biological terrorism: understanding the threat, preparation, and medical response. Dis Mon. 2000;46(2):125–90.

    Article  CAS  PubMed  Google Scholar 

  9. Jansen HJ, Breeveld FJ, Stijnis C, Grobusch MP. Biological warfare, bioterrorism, and biocrime. Clin Microbiol Infect. 2014;20(6):488–96. https://doi.org/10.1111/1469-0691.12699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Russmann H. Toxine, Biogene Gifte und potentielle Kampfstoffe. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2003;11(46):989–96.

    Article  Google Scholar 

  11. Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol. 2014;17:32–7. https://doi.org/10.1016/j.mib.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  12. Patocka J. Brief review of natural nonprotein neurotoxins. ASA Newsl. 2002;89(2):16–24.

    Google Scholar 

  13. Ganesan K, Raza SK, Vijayaraghavan R. Chemical warfare agents. J Pharm Bioallied Sci. 2010;2(3):166–78. https://doi.org/10.4103/0975-7406.68498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tucker J. Dilemmas of a dual-use technology: Toxins in medicine and warfare. Politics Life Sci. 1994;1994:51.

    Article  Google Scholar 

  15. Aronstam RS, Witkop B. Anatoxin-a interactions with cholinergic synaptic molecules. Proc Natl Acad Sci USA. 1981;78(7):4639–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. UNODA. The biological weapons convention. 2017. https://www.un.org/disarmament/geneva/bwc/

  17. OPBW. Protocol to the convention on the prohibition of the development, production and stockpiling of bacteriological (biological) and toxin weapons and on their destruction. 2017. http://www.opbw.org/ahg/docs/CRP8.pdf

  18. OPCW. The chemical weapons convention. 2017. https://www.opcw.org/chemical-weapons-convention/

  19. OPCW. Controlled chemicals. 2017. https://www.opcw.org/our-work/non-proliferation/controlled-chemicals/

  20. Centers for Disease Control and Prevention (CDC). Biological and chemical terrorism: strategic plan for preparedness and response. Recommendations of the CDC Strategic Planning Workgroup. MMWR Recomm Rep. 2000;49(RR-4):1–14.

    Google Scholar 

  21. The Australia Group. 2017. http://www.australiagroup.net/en/

  22. Utkin YN. Modern trends in animal venom research – omics and nanomaterials. World J Biol Chem. 2017;8(1):4–12. https://doi.org/10.4331/wjbc.v8.i1.4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583(11):1736–43. https://doi.org/10.1016/j.febslet.2009.03.029.

    Article  CAS  PubMed  Google Scholar 

  24. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet. 2009;10:483–511. https://doi.org/10.1146/annurev.genom.9.081307.164356.

    Article  CAS  PubMed  Google Scholar 

  25. Wong ES, Belov K. Venom evolution through gene duplications. Gene. 2012;496(1):1–7. https://doi.org/10.1016/j.gene.2012.01.009.

    Article  CAS  PubMed  Google Scholar 

  26. Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci. 2009;66(17):2851–71. https://doi.org/10.1007/s00018-009-0050-2.

    Article  CAS  PubMed  Google Scholar 

  27. Nirthanan S, Gwee MC. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci. 2004;94(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  28. Rowan EG. What does beta-bungarotoxin do at the neuromuscular junction? Toxicon. 2001;39(1):107–18.

    Article  CAS  PubMed  Google Scholar 

  29. Chang CC, Lee CY. Isolation of neurotoxins from the venom of bungarus multicinctus and their modes of neuromuscular blocking action. Arch Int Pharmacodyn Ther. 1963;144:241–57.

    CAS  PubMed  Google Scholar 

  30. Faiz A, Ghose A, Ahsan F, Rahman R, Amin R, Hassan MU, Chowdhury AW, Kuch U, Rocha T, Harris JB, Theakston RD, Warrell DA. The greater black krait (Bungarus niger), a newly recognized cause of neuro-myotoxic snake bite envenoming in Bangladesh. Brain. 2010;133(11):3181–93. https://doi.org/10.1093/brain/awq265.

    Article  PubMed  Google Scholar 

  31. Utkin YN. Animal venom studies: current benefits and future developments. World J Biol Chem. 2015;6(2):28–33. https://doi.org/10.4331/wjbc.v6.i2.28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lebbe EK, Peigneur S, Wijesekara I, Tytgat J. Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs. 2014;12(5):2970–3004. https://doi.org/10.3390/md12052970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alouf JE. Bacterial protein toxins. An overview. Methods Mol Biol. 2000;145:1–26. https://doi.org/10.1385/1-59259-052-7:1.

    Article  CAS  PubMed  Google Scholar 

  34. Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H, Pannu NS, Read RJ, Bundle DR. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature. 2000;403(6770):669–72. https://doi.org/10.1038/35001095.

    Article  CAS  PubMed  Google Scholar 

  35. Lindberg AA, Brown JE, Stromberg N, Westling-Ryd M, Schultz JE, Karlsson KA. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem. 1987;262(4):1779–85.

    CAS  PubMed  Google Scholar 

  36. Merritt EA, Hol WG. AB5 toxins. Curr Opin Struct Biol. 1995;5(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  37. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis. 1985;151(5):775–82.

    Article  CAS  PubMed  Google Scholar 

  38. Karmali MA, Steele BT, Petric M, Lim C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet. 1983;1(8325):619–20.

    Article  CAS  PubMed  Google Scholar 

  39. Stein PE, Boodhoo A, Tyrrell GJ, Brunton JL, Read RJ. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature. 1992;355(6362):748–50. https://doi.org/10.1038/355748a0.

    Article  CAS  PubMed  Google Scholar 

  40. Benefield DA, Dessain SK, Shine N, Ohi MD, Lacy DB. Molecular assembly of botulinum neurotoxin progenitor complexes. Proc Natl Acad Sci USA. 2013;110(14):5630–5. https://doi.org/10.1073/pnas.1222139110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benoit RM, Frey D, Wieser MM, Thieltges KM, Jaussi R, Capitani G, Kammerer RA. Structure of the BoNT/A1—receptor complex. Toxicon. 2015;107(Pt A):25–31. https://doi.org/10.1016/j.toxicon.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  42. Benoit RM, Scharer MA, Wieser MM, Li X, Frey D, Kammerer RA. Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C. Sci Rep. 2017;7:43588. https://doi.org/10.1038/srep43588.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hasegawa K, Watanabe T, Suzuki T, Yamano A, Oikawa T, Sato Y, Kouguchi H, Yoneyama T, Niwa K, Ikeda T, Ohyama T. A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms. J Biol Chem. 2007;282(34):24777–83. https://doi.org/10.1074/jbc.M703446200.

    Article  CAS  PubMed  Google Scholar 

  44. Kumaran D, Rawat R, Ahmed SA, Swaminathan S. Substrate binding mode and its implication on drug design for botulinum neurotoxin A. PLoS Pathog. 2008;4(9):e1000165. https://doi.org/10.1371/journal.ppat.1000165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol. 1998;5(10):898–902. https://doi.org/10.1038/2338.

    Article  CAS  PubMed  Google Scholar 

  46. Lee K, Lam KH, Kruel AM, Perry K, Rummel A, Jin R. High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex. Biochem Biophys Res Commun. 2014;446(2):568–73. https://doi.org/10.1016/j.bbrc.2014.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao G, Lam KH, Perry K, Weisemann J, Rummel A, Jin R. Crystal structure of the receptor-binding domain of botulinum neurotoxin type HA, also known as type FA or H. Toxins (Basel). 2017;9(3). https://doi.org/10.3390/toxins9030093

    Article  PubMed Central  Google Scholar 

  48. Zhang Y, Buchko GW, Qin L, Robinson H, Varnum SM. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions. Biochem Biophys Res Commun. 2011;404(1):407–12. https://doi.org/10.1016/j.bbrc.2010.11.134.

    Article  CAS  PubMed  Google Scholar 

  49. Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol. 2014;12(8):535–49. https://doi.org/10.1038/nrmicro3295.

    Article  CAS  PubMed  Google Scholar 

  50. Barash JR, Arnon SS. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis. 2014;209(2):183–91. https://doi.org/10.1093/infdis/jit449.

    Article  CAS  PubMed  Google Scholar 

  51. Dover N, Barash JR, Hill KK, Xie G, Arnon SS. Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis. 2014;209(2):192–202. https://doi.org/10.1093/infdis/jit450.

    Article  CAS  PubMed  Google Scholar 

  52. Fan Y, Barash JR, Lou J, Conrad F, Marks JD, Arnon SS. Immunological characterization and neutralizing ability of monoclonal antibodies directed against botulinum neurotoxin type H. J Infect Dis. 2016;213(10):1606–14. https://doi.org/10.1093/infdis/jiv770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalb SR, Baudys J, Raphael BH, Dykes JK, Luquez C, Maslanka SE, Barr JR. Functional characterization of botulinum neurotoxin serotype H as a hybrid of known serotypes F and A (BoNT F/A). Anal Chem. 2015;87(7):3911–7. https://doi.org/10.1021/ac504716v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maslanka SE, Luquez C, Dykes JK, Tepp WH, Pier CL, Pellett S, Raphael BH, Kalb SR, Barr JR, Rao A, Johnson EA. A novel botulinum neurotoxin, previously reported as serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes A and F and is neutralized with serotype A antitoxin. J Infect Dis. 2016;213(3):379–85. https://doi.org/10.1093/infdis/jiv327.

    Article  CAS  PubMed  Google Scholar 

  55. Pellett S, Tepp WH, Bradshaw M, Kalb SR, Dykes JK, Lin G, Nawrocki EM, Pier CL, Barr JR, Maslanka SE, Johnson EA. Purification and characterization of botulinum neurotoxin FA from a genetically modified Clostridium botulinum strain. mSphere. 2016;1(1). https://doi.org/10.1128/mSphere.00100-15

  56. Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, Perry K, Kalkum M, Rummel A, Dong M, Jin R. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol. 2016;23(7):656–62. https://doi.org/10.1038/nsmb.3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mazuet C, Legeay C, Sautereau J, Ma L, Bouchier C, Bouvet P, Popoff MR. Diversity of group I and II Clostridium botulinum strains from France including recently identified subtypes. Genome Biol Evol. 2016;8(6):1643–60. https://doi.org/10.1093/gbe/evw101.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindstrom M, Lista F, Luquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins (Basel). 2017;9(1) https://doi.org/10.3390/toxins9010038.

    Article  PubMed Central  Google Scholar 

  59. Peck MW, van Vliet AH. Impact of Clostridium botulinum genomic diversity on food safety. Curr Opin Food Sci. 2016;10:52–9. https://doi.org/10.1016/j.cofs.2016.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bonventre PF. Absorption of botulinal toxin from the gastrointestinal tract. Rev Infect Dis. 1979;1(4):663–7.

    Article  CAS  PubMed  Google Scholar 

  61. Burningham MD, Walter FG, Mechem C, Haber J, Ekins BR. Wound botulism. Ann Emerg Med. 1994;24(6):1184–7.

    Article  CAS  PubMed  Google Scholar 

  62. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O’Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K, Working Group on Civilian B. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;285(8):1059–70.

    Article  CAS  PubMed  Google Scholar 

  63. Bohnel H, Behrens S, Loch P, Lube K, Gessler F. Is there a link between infant botulism and sudden infant death? Bacteriological results obtained in central Germany. Eur J Pediatr. 2001;160(10):623–8.

    Article  CAS  PubMed  Google Scholar 

  64. Franz DR. Defense against toxin weapons. In: Medical aspects of chemical and biological warefare (Textbook of military medicine Parte I). Washington, DC: Borden Institute; 1997.

    Google Scholar 

  65. Holzer E. Botulism caused by inhalation. Med Klin. 1962;57:1735–8.

    CAS  PubMed  Google Scholar 

  66. Middlebrook JL, Franz JR. Botulinum toxins. In: Sidell FR, Takafuji ET, Franz DR, editors. Textbook of military medicine: medical aspects of chemical and biological warfare. Falls Church: Office of the Surgeon General; 1997.

    Google Scholar 

  67. Rosow LK, Strober JB. Infant botulism: review and clinical update. Pediatr Neurol. 2015;52(5):487–92. https://doi.org/10.1016/j.pediatrneurol.2015.01.006.

    Article  PubMed  Google Scholar 

  68. Blum FC, Chen C, Kroken AR, Barbieri JT. Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun. 2012;80(5):1662–9. https://doi.org/10.1128/IAI.00057-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Casey RM, Dumolard L, Danovaro-Holliday MC, Gacic-Dobo M, Diallo MS, Hampton LM, Wallace AS. Global routine vaccination coverage, 2015. MMWR Morb Mortal Wkly Rep. 2016;65(45):1270–3. https://doi.org/10.15585/mmwr.mm6545a5.

    Article  PubMed  Google Scholar 

  70. Rossetto O, Scorzeto M, Megighian A, Montecucco C. Tetanus neurotoxin. Toxicon. 2013;66:59–63. https://doi.org/10.1016/j.toxicon.2012.12.027.

    Article  CAS  PubMed  Google Scholar 

  71. Smedley JG 3rd, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol. 2004;152:183–204. https://doi.org/10.1007/s10254-004-0036-2.

    Article  CAS  PubMed  Google Scholar 

  72. Cole AR, Gibert M, Popoff M, Moss DS, Titball RW, Basak AK. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin. Nat Struct Mol Biol. 2004;11(8):797–8. https://doi.org/10.1038/nsmb804.

    Article  CAS  PubMed  Google Scholar 

  73. Popoff MR. Epsilon toxin: a fascinating pore-forming toxin. FEBS J. 2011;278(23):4602–15. https://doi.org/10.1111/j.1742-4658.2011.08145.x.

    Article  CAS  PubMed  Google Scholar 

  74. Francis JS, Doherty MC, Lopatin U, Johnston CP, Sinha G, Ross T, Cai M, Hansel NN, Perl T, Ticehurst JR, Carroll K, Thomas DL, Nuermberger E, Bartlett JG. Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin Infect Dis. 2005;40(1):100–7. https://doi.org/10.1086/427148.

    Article  PubMed  Google Scholar 

  75. Miller LG, Perdreau-Remington F, Rieg G, Mehdi S, Perlroth J, Bayer AS, Tang AW, Phung TO, Spellberg B. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 2005;352(14):1445–53. https://doi.org/10.1056/NEJMoa042683.

    Article  CAS  PubMed  Google Scholar 

  76. Zapor M, Fishbain JT. Aerosolized biologic toxins as agents of warfare and terrorism. Respir Care Clin N Am. 2004;10(1):111–22. https://doi.org/10.1016/S1078-5337(03)00054-6.

    Article  PubMed  Google Scholar 

  77. Cusick KD, Sayler GS. An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar Drugs. 2013;11(4):991–1018. https://doi.org/10.3390/md11040991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morabito S, Silvestro S, Faggio C. How the marine biotoxins affect human health. Nat Prod Res. 2017:1–11. https://doi.org/10.1080/14786419.2017.1329734.

    Article  PubMed  Google Scholar 

  79. Ajani P, Harwood DT, Murray SA. Recent trends in marine phycotoxins from Australian coastal waters. Mar Drugs. 2017;15(2). https://doi.org/10.3390/md15020033

    Article  PubMed Central  Google Scholar 

  80. Grosse Y, Baan R, Straif K, Secretan B, El Ghissassi F, Cogliano V, Group WHOIAfRoCMW. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncol. 2006;7(8):628–9.

    Article  PubMed  Google Scholar 

  81. Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VT, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet. 1998;352(9121):21–6.

    Article  CAS  PubMed  Google Scholar 

  82. Beltran EC, Neilan BA. Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis. Appl Environ Microbiol. 2000;66(10):4468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Edwards C, Beattie KA, Scrimgeour CM, Codd GA. Identification of anatoxin-A in benthic cyanobacteria (blue-green algae) and in associated dog poisonings at Loch Insh, Scotland. Toxicon. 1992;30(10):1165–75.

    Article  CAS  PubMed  Google Scholar 

  84. Gunn GJ, Rafferty AG, Rafferty GC, Cockburn N, Edwards C, Beattie KA, Codd GA. Fatal canine neurotoxicosis attributed to blue-green algae (cyanobacteria). Vet Rec. 1992;130(14):301–2.

    Article  CAS  PubMed  Google Scholar 

  85. Furey A, Crowley J, Lehane M, James KJ. Liquid chromatography with electrospray ion-trap mass spectrometry for the determination of anatoxins in cyanobacteria and drinking water. Rapid Commun Mass Spectrom. 2003;17(6):583–8. https://doi.org/10.1002/rcm.932.

    Article  CAS  PubMed  Google Scholar 

  86. Namikoshi M, Murakami T, Fujiwara T, Nagai H, Niki T, Harigaya E, Watanabe MF, Oda T, Yamada J, Tsujimura S. Biosynthesis and transformation of homoanatoxin-a in the cyanobacterium Raphidiopsis mediterranea Skuja and structures of three new homologues. Chem Res Toxicol. 2004;17(12):1692–6. https://doi.org/10.1021/tx0498152.

    Article  CAS  PubMed  Google Scholar 

  87. Gupta RC. Veterinary toxicology: basic and clinical principles. Oxford: Academic; 2012.

    Google Scholar 

  88. Wood SA, Selwood AI, Rueckert A, Holland PT, Milne JR, Smith KF, Smits B, Watts LF, Cary CS. First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon. 2007;50(2):292–301. https://doi.org/10.1016/j.toxicon.2007.03.025.

    Article  CAS  PubMed  Google Scholar 

  89. Oyaneder Terrazas J, Contreras HR, Garcia C. Prevalence, variability and bioconcentration of saxitoxin-group in different marine species present in the food chain. Toxins (Basel). 2017;9(6). https://doi.org/10.3390/toxins9060190

    Article  PubMed Central  Google Scholar 

  90. Army Medical Research Institute for Infectious Diseases, US Department of Defense. Medical management of biological casualties handbook. 7th ed. CreateSpace Independent Publishing Platform; 2013.

    Google Scholar 

  91. Clark RF, Williams SR, Nordt SP, Manoguerra AS. A review of selected seafood poisonings. Undersea Hyperb Med. 1999;26(3):175–84.

    CAS  PubMed  Google Scholar 

  92. Pita R, Romero A. Toxins as weapons: a historical review. Forensic Sci Rev. 2014;26(2):85–96.

    CAS  PubMed  Google Scholar 

  93. Hessel DW, Halstead BW, Peckham NH. Marine biotoxins. I. Ciguatera poison: some biological and chemical aspects. Ann NY Acad Sci. 1960;90:788–97.

    Article  CAS  PubMed  Google Scholar 

  94. Molgo J, Laurent D, Pauillac S, Chinain M, Yeeting B. Special issue on “ciguatera and related biotoxins”. Toxicon. 2010;56(5):653–5. https://doi.org/10.1016/j.toxicon.2010.06.017.

    Article  CAS  PubMed  Google Scholar 

  95. Perkins RA, Morgan SS. Poisoning, envenomation, and trauma from marine creatures. Am Fam Physician. 2004;69(4):885–90.

    PubMed  Google Scholar 

  96. Bane V, Lehane M, Dikshit M, O’Riordan A, Furey A. Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins. 2014;6(2):693–755. https://doi.org/10.3390/toxins6020693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chau R, Kalaitzis JA, Neilan BA. On the origins and biosynthesis of tetrodotoxin. Aquat Toxicol. 2011;104(1-2):61–72. https://doi.org/10.1016/j.aquatox.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  98. Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16(3):497–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Paterson RR. Fungi and fungal toxins as weapons. Mycol Res. 2006;110(Pt 9):1003–10. https://doi.org/10.1016/j.mycres.2006.04.004.

    Article  CAS  PubMed  Google Scholar 

  100. Robbins CA, Swenson LJ, Nealley ML, Gots RE, Kelman BJ. Health effects of mycotoxins in indoor air: a critical review. Appl Occup Environ Hyg. 2000;15(10):773–84. https://doi.org/10.1080/10473220050129419.

    Article  CAS  PubMed  Google Scholar 

  101. Bennett JW. Mycotoxins, mycotoxicoses, mycotoxicology and Mycopathologia. Mycopathologia. 1987;100(1):3–5.

    Article  CAS  PubMed  Google Scholar 

  102. Adhikari M, Negi B, Kaushik N, Adhikari A, Al-Khedhairy AA, Kaushik NK, Choi EH. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget. 2017;8(20):33933–52. https://doi.org/10.18632/oncotarget.15422.

    Article  PubMed  PubMed Central  Google Scholar 

  103. McCormick SP, Stanley AM, Stover NA, Alexander NJ. Trichothecenes: from simple to complex mycotoxins. Toxins (Basel). 2011;3(7):802–14. https://doi.org/10.3390/toxins3070802.

    Article  CAS  Google Scholar 

  104. Ueno Y. Mode of action of trichothecenes. Ann Nutr Aliment. 1977;31(4-6):885–900.

    CAS  PubMed  Google Scholar 

  105. Ueno Y. Toxicological features of T-2 toxin and related trichothecenes. Fundam Appl Toxicol. 1984;4(2. Pt 2):S124–32.

    Article  CAS  PubMed  Google Scholar 

  106. Wannemacher RJ, Wiener S. Trichothecene mycotoxins. In: Textbook of military medicine: medical aspects of chemical and biologic warfare. Washington, DC: Office of the Surgeon General at TMM Publications, Borden Institute, Walter Reed Army Medical Center; 1997. p. 655–77.

    Google Scholar 

  107. Squire RA. Ranking animal carcinogens: a proposed regulatory approach. Science. 1981;214(4523):877–80.

    Article  CAS  PubMed  Google Scholar 

  108. Stark AA. Threat assessment of mycotoxins as weapons: molecular mechanisms of acute toxicity. J Food Prot. 2005;68(6):1285–93.

    Article  CAS  PubMed  Google Scholar 

  109. Stirpe F, Barbieri L. Ribosome-inactivating proteins up to date. FEBS Lett. 1986;195(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  110. Puri M, Kaur I, Perugini MA, Gupta RC. Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today. 2012;17(13–14):774–83. https://doi.org/10.1016/j.drudis.2012.03.007.

    Article  CAS  PubMed  Google Scholar 

  111. Stirpe F, Battelli MG. Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci. 2006;63(16):1850–66. https://doi.org/10.1007/s00018-006-6078-7.

    Article  CAS  PubMed  Google Scholar 

  112. Mundy JLR, Boston R, Endo Y, Stirpe F. Genes encoding ribosome-inactivating proteins. 1994. https://doi.org/10.1007/BF02671573

    Article  CAS  Google Scholar 

  113. Stirpe F. Ribosome-inactivating proteins. Toxicon. 2004;44(4):371–83. https://doi.org/10.1016/j.toxicon.2004.05.004.

    Article  CAS  PubMed  Google Scholar 

  114. Girbes T, Ferreras JM, Arias FJ, Stirpe F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev Med Chem. 2004;4(5):461–76.

    Article  CAS  PubMed  Google Scholar 

  115. Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004;44(4):361–70. https://doi.org/10.1016/j.toxicon.2004.05.003.

    Article  CAS  PubMed  Google Scholar 

  116. Endo Y, Mitsui K, Motizuki M, Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987;262(12):5908–12.

    CAS  PubMed  Google Scholar 

  117. Endo Y, Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987;262(17):8128–30.

    CAS  PubMed  Google Scholar 

  118. Bhasker AS, Sant B, Yadav P, Agrawal M, Lakshmana Rao PV. Plant toxin abrin induced oxidative stress mediated neurodegenerative changes in mice. Neurotoxicology. 2014;44:194–203. https://doi.org/10.1016/j.neuro.2014.06.015.

    Article  CAS  PubMed  Google Scholar 

  119. Gasperi-Campani A, Barbieri L, Lorenzoni E, Montanaro L, Sperti S, Bonetti E, Stirpe F. Modeccin, the toxin of Adenia digitata. Purification, toxicity and inhibition of protein synthesis in vitro. Biochem J. 1978;174(2):491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stirpe F, Barbieri L, Abbondanza A, Falasca AI, Brown AN, Sandvig K, Olsnes S, Pihl A. Properties of volkensin, a toxic lectin from Adenia volkensii. J Biol Chem. 1985;260(27):14589–95.

    CAS  PubMed  Google Scholar 

  121. Stirpe F, Sandvig K, Olsnes S, Pihl A. Action of viscumin, a toxic lectin from mistletoe, on cells in culture. J Biol Chem. 1982;257(22):13271–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Striegl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Striegl, H. (2019). Overview on the Systematics of Biotoxins as Threat Agents. In: Singh, S., Kuhn, J. (eds) Defense Against Biological Attacks. Springer, Cham. https://doi.org/10.1007/978-3-030-03071-1_15

Download citation

Publish with us

Policies and ethics