Skip to main content

Fast Numerical Methods for Image Segmentation Models

  • Living reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Abstract

In this chapter, three different types of segmentation problems are studied, namely, two-phase segmentation problems, multiphase segmentation problems, and selective segmentation problems. Three types of numerical methods are discussed here as well. Some of them are time marching schemes, multigrid methods, and multilevel methods. Two types of minimization techniques are discussed, like L2 gradient minimization and Sobolev gradient-based minimization techniques. At the end two deep/machine learning approaches for segmentation of images are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen, A.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  • Alvarez, L., Lions, P.-L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(3), 845–866 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer, New York (2002)

    Book  MATH  Google Scholar 

  • Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Bi-directional convlstm U-Net with densley connected convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  • Badshah, N., Ahmad, A.: ResBCU-Net: deep learning approach for segmentation of skin images. Biomed. Sig. Process. Control 71, 103137 (2022)

    Article  Google Scholar 

  • Badshah, N., Chen, K.: Multigrid method for the Chan-Vese model in variational segmentation. Commun. Comput. Phys. 4(2), 294–316 (2008)

    MathSciNet  MATH  Google Scholar 

  • Badshah, N., Chen, K.: On two multigrid algorithms for modeling variational multiphase image segmentation. IEEE Trans. Image Process. 18(5), 1097–1106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Comput. Phys. 7(4), 759–778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Barash, D., Schlick, T., Israeli, M., Kimmel, R.: Multiplicative operator splittings in nonlinear diffusion: from spatial splitting to multiple timesteps. J. Math. Imaging Vis. 19, 33–48 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)

    Article  MATH  Google Scholar 

  • Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(2), 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Bregman, L.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Briggs, W.L.: A Multigrid Tutorial. (1999)

    MATH  Google Scholar 

  • Burrows, L., Guo, W., Chen, K., Torella, F.: Reproducible kernel Hilbert space based global and local image segmentation. Inverse Probl. Imaging 15(1), 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, X., Chan, R., Nikolova, M., Zeng, T.: A three-stage approach for segmenting degraded color images: smoothing, lifting and thresholding (SLaT). J. Sci. Comput. 72, 1313–1332 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  • Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T.F., Chen, K.: An optimization based multilevel agorithm for total variation image denoising. SIAM J. Multiscale Model. Simul. (MMS) 5(2), 615–645 (2006)

    Google Scholar 

  • Chan, T.F., Vese, L.A.: Active Contours without Edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  • Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, R., Yang, H., Zeng, T.: A two-stage image segmentation method for blurry images with poisson or multiplicative gamma noise. SIAM J. Imaging Sci. 7(1), 98–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  • Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems. SIAM J. Optim. 24(4), 1779–1814 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Cleeremans, A., Servan-Schreiber, D., McClelland, J.: Finite state automata and simple recurrent networks. Neural Comput. 1(3), 372–381 (1989). MIT Press

    Google Scholar 

  • Cui, Z., Ke, R., Pu, Z., Wang, Y.: Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction. arXiv preprint, 1801.02143 (2018)

    Google Scholar 

  • Deng, L.-J., Guo, W., Huang, T.-Z.: Single-image super-resolution via an iterative reproducing kernel hilbert space method. IEEE Trans. Circuits Syst. Video Technol. 26, 2001–2014 (2016)

    Article  Google Scholar 

  • Geiser, J., Bartecki, K.: Additive, multiplicative and iterative splitting methods for Maxwell equations: algorithms and applications. In: International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2017)

    Google Scholar 

  • Goldstein, T., Osher, S.: The split bregman algorithm for l1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Gout, C., Guyader, C.L., Vese, L.: Segmentation under geometrical consitions with geodesic active contour and interpolation using level set methods. Numer. Algorithms 39, 155–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, Y., Stein, J., Wu, G., Krishnamurthy, A.: SAU-Net: a universal deep network for cell counting. In: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, pp. 299–306 (2019)

    Google Scholar 

  • Guyader, C.L., Gout, C.: Geodesic active contour under geometrical conditions theory and 3D applications. Numer. Algorithms 48, 105–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  • Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint, 1502.03167 (2015)

    Google Scholar 

  • Jeon, M., Alexander, M., Pedrycz, W., Pizzi, N.: Unsupervised hierarchical image segmentation with level set and additive operator splitting. Pattern Recogn. Lett. 26(10), 1461–1469 (2005)

    Article  Google Scholar 

  • Jordan, M.I.: Attractor dynamics and parallelism in a connectionist sequential machine. Artif. Neural Netw.: Concept Learn. 112–127 (1990)

    Google Scholar 

  • Jumaat, A.K., Chen, K.: An optimization based multilevel algorithm for variational image segmentation models. Electron. Trans. Numer. Anal. 46, 474–504 (2017)

    MathSciNet  MATH  Google Scholar 

  • Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)

    Article  MATH  Google Scholar 

  • Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 6(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  • Lu, T., Neittaanmaki, P., Tai, X.-C.: A parallel splitting up method for partial differential equations and its application to navier-stokes equations. RAIRO Math. Model. Numer. Anal. 26(6), 673–708 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Olaf, R., Philipp, F., Thomas, B.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 234–241 (2015)

    Google Scholar 

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Pearlmutter, B.: Learning state space trajectories in recurrent neural networks. Neural Comput. 1(2), 263–269 (1989). MIT Press

    Google Scholar 

  • Pratondo, A., Chee-Kong, C., Sim-Heng, O.: Integrating machine learning with region-based active contour models in medical image segmentation. J. Vis. Commun. Image R. 43, 1–9 (2017)

    Article  Google Scholar 

  • Rada, L., Chen, K.: A new variational model with dual level set functions for selective segmentation. Commun. Comput. Phys. 12(1), 261–283 (2012)

    Article  MATH  Google Scholar 

  • Rada, L., Chen, K.: Improved selective segmentation model using one level set. J. Algorithms Comput. Technol. 7(4), 509–541 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, M., Chen, K., Li, J., Irion, K.: On an effective multigrid solver for solving a class of variational problems with application to image segmentation. Int. J. Comput. Math. 97(10), 1–21 (2019)

    MathSciNet  MATH  Google Scholar 

  • Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithm. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Savage, J., Chen, K.: An improved and accelerated non-linear multigrid method for total-variation denoising. Int. J. Comput. Math. 82(8), 1001–1015 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 715–731 (2018)

    Google Scholar 

  • Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

  • Trottenberg, U., Schuller, A.: Multigrid. Academic, Orlando (2001)

    MATH  Google Scholar 

  • Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  • Weickert, J., Kühne, G.: Fast methods for implicit active contours models, preprint 61. Universität des Saarlandes, Saarbrücken (2002)

    Google Scholar 

  • Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. Scale-space theory in computer vision. Lect. Notes Comput. Sci. 1252, 260–271 (1997)

    Article  Google Scholar 

  • Yang, Y., Zhao, Y., Wu, B., Wang, H.: A fast multiphase image segmentation model for gray images. Comput. Math. Appl. 67, 1559–1581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, Y., He, C.: Variational level set methods for image segmentation based on both L2 and Sobolev gradients. Non Linear Anal. Real World Appl. 13, 959–966 (2012)

    Article  MATH  Google Scholar 

  • Zhao, H.-K., Osher, S., Merriman, B., Kang, M.: Implicit and non parametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80(3), 295–314 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Badshah, N. (2022). Fast Numerical Methods for Image Segmentation Models. In: Chen, K., Schönlieb, CB., Tai, XC., Younces, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-03009-4_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03009-4_121-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03009-4

  • Online ISBN: 978-3-030-03009-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics