Skip to main content

Optimal Transport for Generative Models

  • Living reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Abstract

Optimal transport plays a fundamental role in deep learning. Natural data sets have intrinsic patterns, which can be summarized as the manifold distribution principle: a natural class of data can be treated as a probability distribution on a low-dimensional manifold, embedded in a high-dimensional ambient space. A deep learning system mainly accomplishes two tasks: manifold learning and probability distribution learning. Given a manifold X, all the probability measures on X form an infinite dimensional manifold, the so-called Wasserstein space. Optimal transport assigns a Riemannian metric on the Wasserstein space, the so-called Wasserstein metric, and defines Otto’s calculus, such that variational optimization can be carried out in the Wasserstein space \(\mathcal {P}(X)\). A deep learning system learns the distribution by optimizing some functionals in the Wasserstein space \(\mathcal {P}(X)\); therefore optimal transport lays down the theoretic foundation for deep learning. This work introduces the theory of optimal transport and the profound relation between Brenier’s theorem and Alexandrov’s theorem in differential geometry via Monge-Ampère equation. We give a variational proof for Alexandrov’s theorem and convert the proof to a computational algorithm to solve the optimal transport maps. The algorithm is based on computational geometry and can be generalized to general manifold setting. Optimal transport theory and algorithms have been extensively applied in the models of generative adversarial networks (GANs). In a GAN model, the generator computes the optimal transport map (OT map), while the discriminator computes the Wasserstein distance between the generated data distribution and the real data distribution. The optimal transport theory shows the competition between the generator and the discriminator is completely unnecessary and should be replaced by collaboration. Furthermore, the regularity theory of optimal transport map explains the intrinsic reason for mode collapsing. A novel generative model is introduced, which uses an autoencoder (AE) for manifold learning and OT map for probability distribution transformation. This AE-OT model improves the theoretical rigor and transparency, as well as the computational stability and efficiency; in particular, it eliminates the mode collapsing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexandrov, A.D.: Convex polyhedra Translated from the 1950 Russian edition by N.S. Dairbekov, S.S. Kutateladze, A.B. Sossinsky. Springer Monographs in Mathematics (2005)

    Google Scholar 

  • An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.-T., Gu, X.: Ae-ot: A new generative model based on extended semi-discrete optimal transport. In: International Conference on Learning Representations (2020)

    Google Scholar 

  • Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the monge-kantorovich problem. SIAM J. Math. Ann. 35(1), 61–97 (2003)

    Article  MathSciNet  Google Scholar 

  • Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, pp. 214–223 (2017)

    Google Scholar 

  • Benamous, J.-D., Brenier, Y.: A numerical method for the optimal time-continuous mass transport problem and related problems. In: Caffarelli, L.A., Milman, M. (eds.) Monge Ampère Equation: Applications to Geometry and Optimization (Deerfield Beach, FL), volume 226 of Contemporary Mathematics, pp. 1–11, Providence (1999) American Mathematics Society

    Google Scholar 

  • Bonnotte, N.: From knothe’s rearrangement to Brenier’s optimal transport map. SIAM J. Math. Anal. 45(1), 64–87 (2013)

    Article  MathSciNet  Google Scholar 

  • Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  • Caffarelli, L.A.: Some regularity properties of solutions of monge–ampère equation. Commun. Pure Appl. Math. 44(8–9), 965–969 (1991)

    Article  Google Scholar 

  • Cui, L., Qi, X., Wen, C., Lei, N., Li, X., Zhang, M., Gu, X.: Spherical optimal transportation. Comput. Aided Des. 115, 181–193 (2019)

    Article  MathSciNet  Google Scholar 

  • Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 2292–2300. Curran Associates, Inc. (2013)

    Google Scholar 

  • Dai, B., Wipf, D.: Diagnosing and enhancing VAE models. In: International Conference on Learning Representations (2019)

    Google Scholar 

  • De Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. 31(6), 171 (2012)

    Google Scholar 

  • De Goes, F., Cohen-Steiner, D., Alliez, P., Desbrun, M.: An optimal transport approach to robust reconstruction and simplification of 2D shapes. In: Computer Graphics Forum, vol. 30, pp. 1593–1602. Wiley Online Library (2011)

    Google Scholar 

  • Dominitz, A., Tannenbaum, A.: Texture mapping via optimal mass transport. IEEE Trans. Vis. Comput. Graph. 16(3), 419–433 (2010)

    Article  Google Scholar 

  • Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In: https://arxiv.org/abs/1907.02544 (2019)

    Google Scholar 

  • Figalli, A.: Regularity properties of optimal maps between nonconvex domains in the plane. Communications in Partial Differential Equations, 35(3), 465–479 (2010)

    Article  MathSciNet  Google Scholar 

  • Goodfellow, I.: Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)

    Google Scholar 

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  • Gu, D.X., Luo, F., Sun, J., Yau, S.-T.: Variational principles for minkowski type problems, discrete optimal transport, and discrete monge–ampère equations. Asian J. Math. 20, 383–398 (2016)

    Article  MathSciNet  Google Scholar 

  • Guan, P., Wang, X.-J., et al.: On a monge-ampere equation arising in geometric optics. J. Diff. Geom. 48(48), 205–223 (1998)

    MathSciNet  MATH  Google Scholar 

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans.yIn NIPS, pp. 5769–5779 (2017)

    Google Scholar 

  • Gutiérrez, C.E., Huang, Q.: The refractor problem in reshaping light beams. Arch. Ration. Mech. Anal. 193(2), 423–443 (2009)

    Article  MathSciNet  Google Scholar 

  • Gelly, S., Schoelkopf, B., Tolstikhin, I., Bousquet, O.: Wasserstein auto-encoders. In: ICLR (2018)

    Google Scholar 

  • Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  • Jain, U., Zhang, Z., Schwing, A.G.: Creativity: Generating diverse questions using variational autoencoders. In: CVPR, pp. 5415–5424 (2017)

    Google Scholar 

  • Jeff Donahue, T.D., Krähenbühl, P.: Adversarial feature learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  • Kantorovich, L.V.: On a problem of monge. J. Math. Sci. 133(4), 1383–1383 (2006)

    Article  MathSciNet  Google Scholar 

  • Kantorovich, L.V.: On a problem of monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)

    Google Scholar 

  • Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

    Google Scholar 

  • Lindbo Larsen, A.B., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric (2016)

    Google Scholar 

  • Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network (2017)

    Book  Google Scholar 

  • Lei, N., An, D., Guo, Y., Su, K., Liu, S., Luo, Z., Yau, S.-T., Gu, X.: A geometric understanding of deep learning. Engineering 6(3), 361–374 (2020)

    Article  Google Scholar 

  • Lei, N., Su, K., Cui, L., Yau, S.-T., Gu, X.D.: A geometric view of optimal transportation and generative model. Comput. Aided Geom. Des. 68, 1–21 (2019)

    Article  MathSciNet  Google Scholar 

  • Lin, Z., Khetan, A., Fanti, G., Oh, S.: Pacgan: The power of two samples in generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 1505–1514 (2018)

    Google Scholar 

  • Liu, H., Gu, X., Samaras, D.: Wasserstein gan with quadratic transport cost. In: ICCV (2019)

    Google Scholar 

  • Ma, X.N., Trudinger, N.S., Wang, X.J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)

    Article  MathSciNet  Google Scholar 

  • Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

    Google Scholar 

  • Mérigot, Q.: A multiscale approach to optimal transport. In: Computer Graphics Forum, vol. 30, pp. 1583–1592. Wiley Online Library (2011)

    Google Scholar 

  • Mescheder, L.M., Nowozin, S., Geiger, A.: Which training methods for gans do actually convergence? In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  • Meyron, J., Mérigot, Q., Thibert, B.: Light in power: a general and parameter-free algorithm for caustic design. In: SIGGRAPH Asia 2018 Technical Papers, p. 224. ACM (2018)

    Google Scholar 

  • Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)

    Google Scholar 

  • Nadeem, S., Su, Z., Zeng, W., Kaufman, A.E., Gu, X.: Spherical parameterization balancing angle and area distortions. IEEE Trans. Vis. Comput. Graph. 23(6), 1663–1676 (2017)

    Article  Google Scholar 

  • Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  • Razavi, A., Oord, A., Vinyals, O.: Generating diverse high-fidelity images with vq-vae-2. In: ICLR 2019 Workshop DeepGenStruct (2019)

    Google Scholar 

  • Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 (2014)

    Google Scholar 

  • Salakhutdinov, R., Burda, Y., Grosse, R.: Importance weighted autoencoders. In: ICML (2015)

    Google Scholar 

  • Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  • Simonyany, K., Brock, A., Donahuey, J.: Large scale gan training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019)

    Google Scholar 

  • Solomon, J., de Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.: Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM Trans. Graph. 34, 1–11 (2015a)

    Article  Google Scholar 

  • Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.: Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM Trans. Graph. 34(4), 66 (2015b)

    Article  Google Scholar 

  • Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Earth mover’s distances on discrete surfaces. ACM Trans. Graph. 33(4), 67 (2014)

    Article  Google Scholar 

  • Su, K., Chen, W., Lei, N., Cui, L., Jiang, J., Gu, X.D.: Measure controllable volumetric mesh parameterization. Comput. Aided Des. 78(C), 188–198 (2016)

    Article  Google Scholar 

  • Su, K., Chen, W., Lei, N., Zhang, J., Qian, K., Gu, X.: Volume preserving mesh parameterization based on optimal mass transportation. Comput. Aided Des. 82:42–56 (2017)

    Article  MathSciNet  Google Scholar 

  • Su, K., Cui, L., Qian, K., Lei, N., Zhang, J., Zhang, M., Gu, X.D.: Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation. Comput. Aided Geom. Des. 46(C):76–91 (2016)

    Article  MathSciNet  Google Scholar 

  • Su, Z., Zeng, W., Shi, R., Wang, Y., Sun, J., Gu, X.: Area preserving brain mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2242 (2013)

    Google Scholar 

  • Thoma, J., Acharya, D., Van Gool, L., Wu, J., Huang, Z.: Wasserstein divergence for gans. In: ECCV (2018)

    Google Scholar 

  • ur Rehman, T., Haber, E., Pryor, G., Melonakos, J., Tannenbaum, A.: 3D nonrigid registration via optimal mass transport on the GPU. Med. Image Anal. 13(6), 931–940 (2009)

    Google Scholar 

  • van den Oord, K.K.A., Vinyals, O.: Neural discrete representation learning. In: NeurIPS (2017)

    Google Scholar 

  • Villani, C.: Optimal transport: Old and new, vol. 338. Springer Science & Business Media (2008)

    Google Scholar 

  • Wang, X.-J.: On the design of a reflector antenna. Inverse Prob. 12(3), 351 (1996)

    Article  MathSciNet  Google Scholar 

  • Wang, X.-J.: On the design of a reflector antenna II. Calc. Var. Partial Differ. Equ. 20(3), 329–341 (2004)

    Article  MathSciNet  Google Scholar 

  • Xiao, C., Zhong, P., Zheng, C.: Bourgan: Generative networks with metric embeddings. In: NeurIPS (2018)

    Google Scholar 

  • Yau, S.-T.: SS Chern: A great geometer of the twentieth century. International PressCo (1998)

    Google Scholar 

  • Yu, X., Lei, N., Zheng, X., Gu, X.: Surface parameterization based on polar factorization. J. Comput. Appl. Math. 329(C), 24–36 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Gu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gu, X., Lei, N., Yau, ST. (2021). Optimal Transport for Generative Models. In: Chen, K., Schönlieb, CB., Tai, XC., Younces, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-03009-4_105-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03009-4_105-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03009-4

  • Online ISBN: 978-3-030-03009-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics