Skip to main content

Reliability in Fully Probabilistic Event-B: How to Bound the Enabling of Events

  • Conference paper
  • First Online:
New Trends in Model and Data Engineering (MEDI 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 929))

Included in the following conference series:

  • 545 Accesses

Abstract

In previous work, we have proposed a fully probabilistic version of Event-B where all the non-deterministic choices are replaced by probabilistic ones and, particularly, the events are equipped with weights that allow us to consider their enabling probability. In this work, we focus on the reliability of the system by proposing to constraint the probability of enabling an event (or a set of events) to control its importance with regard to the intended system behaviour. We add a specific upper bound which must limit the enabling probabilities of the chosen events and we consider the necessary proof obligations to check that the considered events respect the bound. At the end, we illustrate our work by presenting a case study specified in probabilistic Event-B and where bounding the enabling of some events is mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC, Boca Raton (2010)

    MATH  Google Scholar 

  2. Abrial, J.R., Cansell, D., Méry, D.: A mechanically proved and incremental development of IEEE 1394 tree identify protocol. Form. Asp. Comput. 14(3), 215–227 (2003)

    Article  Google Scholar 

  3. Villemeur, A.: Reliability, Availability, Maintainability and Safety Assessment: Assessment, Hardware, Software and Human Factors, vol. 2. Wiley, Hoboken (1992)

    Google Scholar 

  4. Chu, W.W., Sit, C.M.: Estimating task response time with contentions for real-time distributed systems. In: Proceedings of the Real-Time Systems Symposium, pp. 272–281. IEEE (1988)

    Google Scholar 

  5. Trivedi, K.S., Ramani, S., Fricks, R.: Recent advances in modeling response-time distributions in real-time systems. Proc. IEEE 91(7), 1023–1037 (2003)

    Article  Google Scholar 

  6. Stoelinga, M.: An introduction to probabilistic automata. Bull. EATCS 78(176–198), 2 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  8. Katoen, J.-P.: Abstraction of probabilistic systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 1–3. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1_1

    Chapter  Google Scholar 

  9. Dehnert, C., Gebler, D., Volpato, M., Jansen, D.N.: On abstraction of probabilistic systems. In: Remke, A., Stoelinga, M. (eds.) Stochastic Model Checking. Rigorous Dependability Analysis Using Model Checking Techniques for Stochastic Systems. LNCS, vol. 8453, pp. 87–116. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45489-3_4

    Chapter  MATH  Google Scholar 

  10. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Logic in Computer Science. LICS 1991, pp. 266–277. IEEE (1991)

    Google Scholar 

  11. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60692-0_70

    Chapter  MATH  Google Scholar 

  12. Baier, C., Katoen, J.P., et al.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  13. Haghighi, H., Afshar, M.: A Z-based formalism to specify Markov chains. Comput. Sci. Eng. 2(3), 24–31 (2012)

    Article  Google Scholar 

  14. Sere, K., Troubitsyna, E.: Probabilities in action systems. In: Proceedings of the 8th Nordic Workshop on Programming Theory, pp. 373–387 (1996)

    Google Scholar 

  15. Hoang, T.S.: The development of a probabilistic B-method and a supporting toolkit. Ph.D. thesis. The University of New South Wales (2005)

    Google Scholar 

  16. Goldreich, O.: Probabilistic proof systems. In: Modern Cryptography, Probabilistic Proofs and Pseudorandomness. AC, vol. 17, pp. 39–72. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-12521-2_2

    Chapter  Google Scholar 

  17. Barthe, G., Fournet, C., Grégoire, B., Strub, P.Y., Swamy, N., Zanella-Béguelin, S.: Probabilistic relational verification for cryptographic implementations. In: ACM SIGPLAN Notices, vol. 49, pp. 193–205. ACM (2014)

    Google Scholar 

  18. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in HOL. Electron. Not. Theoret. Comput. Sci. 112, 95–111 (2005)

    Article  Google Scholar 

  19. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci. Comput. Program. 74(8), 568–589 (2009)

    Article  MathSciNet  Google Scholar 

  20. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis. University of Cambridge, Computer Laboratory (2003)

    Google Scholar 

  21. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  22. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol. Transf. 12(6), 447–466 (2010)

    Article  Google Scholar 

  23. Morgan, C., Hoang, T.S., Abrial, J.-R.: The challenge of probabilistic Event B—extended abstract—. In: Treharne, H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 162–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11415787_10

    Chapter  Google Scholar 

  24. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in Event-B. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5_16

    Chapter  Google Scholar 

  25. Yilmaz, E.: Tool support for qualitative reasoning in Event-B. Ph.D. thesis, Master thesis. ETH Zürich (2010)

    Google Scholar 

  26. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Reliability assessment in Event-B development. In: NODES 2009 (2009)

    Google Scholar 

  27. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Integrating stochastic reasoning into Event-B development. Form. Asp. Comput. 27(1), 53–77 (2015)

    Article  MathSciNet  Google Scholar 

  28. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Towards probabilistic modelling in Event-B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 275–289. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16265-7_20

    Chapter  Google Scholar 

  29. Aouadhi, M.A., Delahaye, B., Lanoix, A.: Moving from Event-B to probabilistic Event-B. In: Proceedings of the 32nd Annual ACM Symposium on Applied Computing. ACM (2017)

    Google Scholar 

  30. Aouadhi, M.A., Delahaye, B., Lanoix, A.: Introducing probabilistic reasoning within Event-B. Softw. Syst. Model. (2017)

    Google Scholar 

  31. Gaiero, D., Zola, U.: ICT Vs FCT Test: case studies, June 2014

    Google Scholar 

  32. Electronics notes: PCP Inspection Techniques and Technologies. https://www.electronics-notes.com/articles/test-methods/automatic-automated-test-ate/pcb-inspection.php

  33. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Lanoix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aouadi, S., Lanoix, A. (2018). Reliability in Fully Probabilistic Event-B: How to Bound the Enabling of Events. In: Abdelwahed, E., et al. New Trends in Model and Data Engineering. MEDI 2018. Communications in Computer and Information Science, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-030-02852-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02852-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02851-0

  • Online ISBN: 978-3-030-02852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics