Skip to main content

Convex Language Semantics for Nondeterministic Probabilistic Automata

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2018 (ICTAC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11187))

Included in the following conference series:

Abstract

We explore language semantics for automata combining probabilistic and nondeterministic behaviors. We first show that there are precisely two natural semantics for probabilistic automata with nondeterminism. For both choices, we show that these automata are strictly more expressive than deterministic probabilistic automata, and we prove that the problem of checking language equivalence is undecidable by reduction from the threshold problem. However, we provide a discounted metric that can be computed to arbitrarily high precision.

This work was partially supported by ERC starting grant ProFoundNet (679127), ERC consolidator grant AVS-ISS (648701), a Leverhulme Prize (PLP-2016-129), and an NSF grant (1637532).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In prior work [7], the monad was defined to take all convex subsets rather than just the finitely generated ones. However, since all the monad operations preserve finiteness of the generators, the restricted monad we consider is also well-defined.

  2. 2.

    All concrete automata considered in this paper will have a finite state space, but this is not required by Definition 6. The distribution monad, for example, does not preserve finite sets in general.

  3. 3.

    The \(\mathsf {max}\) semantics is perhaps preferable since it recovers standard nondeterministic finite automata when there is no probabilistic choice and the output weights are in \(\{0, 1\}\), but this is a minor point.

References

  1. Akshay, S., Antonopoulos, T., Ouaknine, J., Worrell, J.: Reachability problems for Markov chains. Inf. Process. Lett. 115(2), 155–158 (2015). https://doi.org/10.1016/j.ipl.2014.08.013

    Article  MathSciNet  MATH  Google Scholar 

  2. Arbib, M.A., Manes, E.G.: Fuzzy machines in a category. Bull. Aust. Math. Soc. 13(2), 169–210 (1975). https://doi.org/10.1017/s0004972700024412

    Article  MathSciNet  MATH  Google Scholar 

  3. Balle, B., Castro, J., Gavaldà, R.: Adaptively learning probabilistic deterministic automata from data streams. Mach. Learn. 96(1–2), 99–127 (2014). https://doi.org/10.1007/s10994-013-5408-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences for nondeterministic and probabilistic processes. Log. Methods Comput. Sci. 10(1), Article no. 16 (2014). https://doi.org/10.2168/lmcs-10(1:16)2014

  5. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of fixed dimension. Theory Comput. Syst. 36, 231–245 (2003). https://doi.org/10.1007/s00224-003-1061-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonchi, F., Pous, D.: Hacking nondeterminism with induction and coinduction. Commun. ACM 58(2), 87–95 (2015). https://doi.org/10.1145/2713167

    Article  Google Scholar 

  7. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R., Nestmann, U. (eds.) Proceedings of 28th International Conference on Concurrency Theory, CONCUR 2017, Berlin, September 2017. Leibniz International Proceedings in Informatics, vol. 85, Article no. 23. Dagstuhl Publishing, Saarbrücken/Wadern (2017). https://doi.org/10.4230/lipics.concur.2017.23

  8. Bonchi, F., Sokolova, A., Vignudelli, V.: Trace semantics for nondeterministic probabilistic automata via determinization. arXiv preprint 1808.00923 (2018). https://arxiv.org/abs/1808.00923

  9. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Testing finitary probabilistic processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_19

    Chapter  Google Scholar 

  10. Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimulation for labeled Markov processes. In: Proceedings of 13th Annual IEEE Symposium on Logic in Computer Science. LICS 1998, Indianapolis, IN, June 1998, pp. 478–487. IEEE CS Press, Washington, D.C. (1998). https://doi.org/10.1109/lics.1998.705681

  11. Everest, G., van der Poorten, A.J., Shparlinski, I.E., Ward, T.: Recurrence Sequences, Mathematical surveys and monographs, vol. 104. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

  12. Fijalkow, N.: Undecidability results for probabilistic automata. ACM SIGLOG News 4(4), 10–17 (2017). https://doi.org/10.1145/3157831.3157833

    Article  Google Scholar 

  13. Fijalkow, N., Klin, B., Panangaden, P.: Expressiveness of probabilistic modal logics, revisited. In: Chatzigiannakis, Y., Indyk, P., Kuhn, F., Muscholl, A. (eds.) Proc. of 44th Int. Coll. on Automata, Languages and Programming, ICALP 2017, Warsaw, July 2017. Leibniz International Proceedings in Informatics, vol. 80, Article no. 105. Dagstuhl Publishing, Saarbrücken/Wadern (2017). https://doi.org/10.4230/lipics.icalp.2017.105

  14. Goncharov, S., Milius, S., Silva, A.: Towards a coalgebraic Chomsky hierarchy (extended abstract). In: Díaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 265–280. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7_21

    Chapter  Google Scholar 

  15. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci. Res. Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7

    Article  Google Scholar 

  16. Hermanns, H., Katoen, J.: The how and why of interactive Markov chains. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17071-3_16

    Chapter  MATH  Google Scholar 

  17. Hermanns, H., Krcál, J., Kretínský, J.: Probabilistic bisimulation: naturally on distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 249–265. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_18

    Chapter  Google Scholar 

  18. Kozen, D.: Semantics of probabilistic programs. In: Proceedings of 20th Annual Symposium on Foundations of Computer Science, FOCS 1979, San Juan, PR, October 1979, pp. 101–114. IEEE CS Press, Washington, D.C. (1979). https://doi.org/10.1109/sfcs.1979.38

  19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  20. Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: On automated verification of probabilistic programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_13

    Chapter  Google Scholar 

  21. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence sequences. In: Proceedings of 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, OR, January 2014, pp. 366–379. SIAM (2014). https://doi.org/10.1137/1.9781611973402

    MATH  Google Scholar 

  22. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York/London (1971). https://doi.org/10.1016/c2013-0-11297-4

    Book  MATH  Google Scholar 

  23. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963). https://doi.org/10.1016/s0019-9958(63)90290-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Rabin, M.O.: Probabilistic algorithms. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent Results, pp. 21–39. Academic Press, New York (1976)

    Google Scholar 

  25. Rabin, M.O.: \(N\)-process mutual exclusion with bounded waiting by \(4 \log _2 N\)-valued shared variable. J. Comput. Syst. Sci. 25(1), 66–75 (1982). https://doi.org/10.1016/0022-0000(82)90010-1

    Article  MATH  Google Scholar 

  26. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic automata with variable memory length. Mach. Learn. 25(2), 117–149 (1996). https://doi.org/10.1023/a:1026490906255

    Article  MATH  Google Scholar 

  27. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: towards a classification. Theor. Comput. Sci. 170(1–2), 297–348 (1996). https://doi.org/10.1016/s0304-3975(96)80710-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1995)

    Google Scholar 

  29. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci. 9(1), Article no. 9 (2013). https://doi.org/10.2168/lmcs-9(1:9)2013

  30. Swaminathan, M., Katoen, J.P., Olderog, E.R.: Layered reasoning for randomized distributed algorithms. Form. Asp. Comput. 24(4), 477–496 (2012). https://doi.org/10.1007/s00165-012-0231-x

    Article  MathSciNet  MATH  Google Scholar 

  31. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  32. Vignudelli, V.: Behavioral equivalences for higher-order languages with probabilities. Ph.D. thesis, Univ. di Bologna (2017)

    Google Scholar 

Download references

Acknowledgements

We thank Nathanaël Fijalkow and the anonymous reviewers for their useful suggestions to improve the paper. The semantics studied in this paper has been brought to our attention in personal communication by Filippo Bonchi, Ana Sokolova, and Valeria Vignudelli. Their interest in this semantics is mostly motivated by its relationship with trace semantics previously proposed in the literature. This is the subject of a forthcoming publication [8].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Heerdt, G., Hsu, J., Ouaknine, J., Silva, A. (2018). Convex Language Semantics for Nondeterministic Probabilistic Automata. In: Fischer, B., Uustalu, T. (eds) Theoretical Aspects of Computing – ICTAC 2018. ICTAC 2018. Lecture Notes in Computer Science(), vol 11187. Springer, Cham. https://doi.org/10.1007/978-3-030-02508-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02508-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02507-6

  • Online ISBN: 978-3-030-02508-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics