Skip to main content

Comparison of Reconstruction Strategies of Compressive Sensing Applied to Ultrasound Images

  • Conference paper
  • First Online:
Digital Science (DSIC18 2018)

Abstract

Ultrasound medical images are important for medical diagnose. The method allows the real-time visualization of organs of the body and it is not invasive. In this study, a comparison of reconstruction greedy search methods, used in compressive sensing, is performed. The methods and the algorithms are explained and experiments are carried out in synthetic and measured data. Result show that the orthogonal matching pursuit outperforms the other methods in the greedy search classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrick, J.F., Krusen, F.H.: Ultrasound and medicine (a survey of experimental studies). In: Transactions of the IRE Professional Group on Ultrasonic Engineering, vol. PGUE-1, pp. 4–13 (1954)

    Google Scholar 

  2. Donoho, D.L.: Compressed sensing. Stanford University, Technical report (2004)

    Google Scholar 

  3. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Technical report (2004)

    Google Scholar 

  4. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  5. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  6. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928)

    Article  Google Scholar 

  7. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  8. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  9. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(6), 948–958 (2010)

    Article  Google Scholar 

  10. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theor. 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  11. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  12. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)

    Article  MathSciNet  Google Scholar 

  13. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  14. Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  15. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  16. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  17. Liu, L., Xie, Z., Feng, J.: Backtracking-based iterative regularization method for image compressive sensing recovery. Algorithms 10(1), 7 (2017)

    Article  MathSciNet  Google Scholar 

  18. Bouchot, J.L., Foucart, S., Hitczenko, P.: Hard thresholding pursuit algorithms: number of iterations. Appl. Comput. Harmonic Anal. 41(2), 412–435 (2016)

    Article  MathSciNet  Google Scholar 

  19. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhauser, Cambridge (2013)

    Book  Google Scholar 

  20. Jensen, J.A.: Field II simulation program. https://field-ii.dk/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Toledo Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez, E.T., de Jesús Ochoa Domínguez, H., Argüelles, S.V.T., Hernández, L.J.R. (2019). Comparison of Reconstruction Strategies of Compressive Sensing Applied to Ultrasound Images. In: Antipova, T., Rocha, A. (eds) Digital Science. DSIC18 2018. Advances in Intelligent Systems and Computing, vol 850. Springer, Cham. https://doi.org/10.1007/978-3-030-02351-5_52

Download citation

Publish with us

Policies and ethics