Skip to main content

Inverse Methodology for Estimating the Heat Transfer Coefficient in a Duplex Stainless Steel Casting

  • Chapter
  • First Online:
Materials Design and Applications II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 98))

Abstract

In sand casting of metallic alloys, the cooling rate is a key parameter that affects the microstructure and the appearance of defects and residual stresses in the end cast components. In this work, a numerical model was developed to simulate the cooling of a duplex stainless steel casting on a furan-bonded sand mold. The heat transfer coefficient (HTC) as a function of temperature was determined by an inverse method. A good agreement between experimental and numerical cooling curves was achieved, showing the importance of estimating HTC as a function of temperature. On the basis of these results, it is possible to calculate thermal residual stresses and model the microstructure of duplex stainless steel castings with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Honggang, Z., Xiangru, C., Lu, A., Qije, Z.: Effect of cooling rate on solidification structure and linear contraction of a duplex stainless steel. China Foundry 9(3), 239–243 (2012)

    Google Scholar 

  2. Palumbo, G., Piccininni, A., Piglionico, V., Guglielmi, P., Sorgente, D., Tricarico, L.: Modelling residual stresses in sand-cast superduplex stainless steel. J. Mater. Process. Technol. 217, 253–261 (2015)

    Google Scholar 

  3. Zhang, L., Tan, W., Hu, H.: Determination of the heat transfer coefficient at the metal–sand mold interface of lost foam casting process. Heat Mass Transf. 52, 1131–1138 (2016)

    Article  CAS  Google Scholar 

  4. Bohacek, J., Kharicha, A., Ludwig, A., Wu, M., Karimi-Sibaki, E.: Heat transfer coefficient at cast-mold interface during centrifugal casting: calculation of air gap. Metall. Mater. Trans. B 49B, 1421–1433 (2018)

    Article  Google Scholar 

  5. Hadala, B., Malinowski, Z., Szajding, A.: Solution strategy for the inverse determination of the specially varying heat transfer coefficient. Int. J. Heat Mass Transf. 104, 993–1007 (2017)

    Article  Google Scholar 

  6. Wang, D., Zhou, C., Xu, G., Huaiyuan, A: Heat transfer behavior of top side-pouring twin-roll casting. J. Mater. Process. Technol. 214(6), 1275–1284 (2014)

    Google Scholar 

  7. Prabhu, K.N., Ashish, A.A.: Inverse modeling of heat transfer with application to solidification and quenching. Mater. Manuf. Process. 17(4), 469–481 (2002)

    Article  CAS  Google Scholar 

  8. Felde, I., Fried, Z., Szénási, S.: Solution of 2-D inverse heat conduction problem with graphic accelerator. Mater. Perform. Charact. 6(5), 882–893 (2017)

    CAS  Google Scholar 

  9. Malinowski, Z., Cebo-Rudnicka, A., Telejko, T., Hadala, B., Szajding, A.: Inverse method implementation to heat transfer coefficient determination over the plate cooled by water spray. Inverse Probl. Sci. Eng. 23(3), 518–556 (2014)

    Article  Google Scholar 

  10. Wang, Z., Yao, M., Wang, X., Zhang, X., Yang, L., Lu, H., Wang, X.: Inverse problem-coupled heat transfer model for steel continuous casting. J. Mater. Process. Technol. 214(1), 44–49 (2014)

    Article  CAS  Google Scholar 

  11. Palumbo, G., Piglionico, V., Piccininni, A., Guglielmi, P., Sorgente, D., Tricarico, L.: Determination of interfacial heat transfer coefficients in a sand mould casting process using an optimised inverse analysis. Appl. Therm. Eng. 78, 682–694 (2015)

    Article  CAS  Google Scholar 

  12. Kang, J., Hao, X., Nie, G., Long, H., Liu, B.: Intensive riser cooling of castings after solidification. J. Mater. Process. Technol. 215, 278–286 (2015)

    Article  Google Scholar 

  13. Nilsson, J.-O., Kangas, P., Karlsson, T., Wilson, A.: Mechanical properties, microstructural stability and kinetics of sigma-phase formation in 29Cr-6Ni-2Mo-0.38 N superduplex stainless steel. Metall. Mater. Trans. A 31(A), 35–45 (2000)

    Google Scholar 

  14. Elmer, J.W., Palmer, T.A., Specht, E.D.: Direct observations of sigma phase formation in duplex stainless steels using in situ synchrotron X-Ray diffraction. Metall. Trans. A 38(A), 464–475 (2007)

    Google Scholar 

  15. Arunkumar, S., Rao, K.V.S., Kumar, T.S.P.: Spatial variation of heat flux at the metal–mold interface due to mold filling effects in gravity die-casting. Int. J. Heat Mass Transf. 51, 2676–2685 (2008)

    Article  CAS  Google Scholar 

  16. Chen, L., Wang, Y., Peng, L., Fu, P., Jiang, H.: Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand. Exp. Thermal Fluid Sci. 54, 196–203 (2014)

    Article  CAS  Google Scholar 

  17. Vacca, S., Martorano, M.A., Heringer, R. Boccalini Jr., M.: Determination of the heat transfer coefficient at the metal-mold interface during centrifugal casting. Metall. Mater. Trans. A 46(A), 2238–2248 (2015)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of this work by the Hungarian State and the European Union under the EFOP-3.6.1-16-2016-00010 project and the Hungarian-Portuguese bilateral Scientific and Technological (TÉT_16-1-2016-0097) project/Project 3883, Fundação para a Ciência e Tecnologia (FCT—Portugal) and Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFIH—Hungary).

The authors also acknowledge FERESPE—Fundição Portuguesa de Ferro e Aço (Portugal) for providing the material and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sousa, R.O., Felde, I., Ferreira, P.J., Deus, A.M., Ribeiro, L.M.M. (2019). Inverse Methodology for Estimating the Heat Transfer Coefficient in a Duplex Stainless Steel Casting. In: Silva, L. (eds) Materials Design and Applications II. Advanced Structured Materials, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-02257-0_5

Download citation

Publish with us

Policies and ethics