Skip to main content

Biology of Extracellular HSP60

  • Chapter
  • First Online:
Chaperokine Activity of Heat Shock Proteins

Abstract

The exposure of cells or organisms to high temperature leads to the release of alert molecules such as Heat Shock Protein: the HSP. This protein family has been initially described in Drosophila. The cellular response to a heat shock involving HSP is conserved across species, from bacteria to humans and including plants. Other stresses, such as ischemia, heavy metal poisoning, nutrient deprivation, irradiations, infections, oxidative stress and inflammation, can also induce the HSP expression. HSP form a large family of proteins which are classified according to their molecular weight: HSP100, HSP90, HSP70, HSP60, HSP40, HSP from 20 to 30 kDa and HSP10. HSP60 has different functions depending on its localization. Intracellular HSP60 can be found in the cytosol, mitochondria and the chloroplast. Therein, it has a chaperone activity by assisting the proteins folding. On the cell surface or in the extracellular medium, HSP60 acts as a danger signaling molecule. Thus, stressed or damaged cells can stimulate the immune system. Indeed, this extracellular HSP60 are involved in several inflammatory pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Antigen presenting cells

CCT:

“chaperon” containing the T-complex of polypeptide 1

Cpn60:

Chaperonin 60 kDa

DAMP:

Damage associated molecular pattern

DC:

Dendritic cells

HSP:

Heat shock protein

LPS:

Lipopolysaccharide

LTγδ:

Gamma delta T lymphocytes

mtHSP60:

Mitochondrial form

PAMP:

Pathogen associated molecular pattern

RBP:

Rubisco binding protein

sHSP60:

Soluble HSP60

Th:

Helper T lymphocytes

Treg:

Regulatory T lymphocytes

TriC:

TCP-1 Complex ring

References

  • Aalberse JA, Kapitein B, de Roock S, Klein MR, de Jager W, van der Zee R, Hoekstra MO, van Wijk F, Prakken BJ (2011) Cord blood CD4+ T cells respond to self heat shock protein 60 (HSP60). PLoS One 6:e24119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apuya NR, Yadegari R, Fischer RL, Harada JJ, Zimmerman JL, Goldberg RB (2001) The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol 126:717–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya RK, Singh A, Yadav NK, Cheruvu SH, Hossain Z, Meena S, Maheshwari S, Singh AK, Shahab U, Sharma C et al (2015) Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis. Sci Rep 5:18457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atre N, Thomas L, Mistry R, Pathak K, Chiplunkar S (2006) Role of nitric oxide in heat shock protein induced apoptosis of gammadeltaT cells. Int J Cancer 119:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Bajramović JJ, Bsibsi M, Geutskens SB, Hassankhan R, Verhulst KC, Stege GJ, de Groot CJ, van Noort JM (2000) Differential expression of stress proteins in human adult astrocytes in response to cytokines. J Neuroimmunol 106:14–22

    Article  PubMed  Google Scholar 

  • Balczun C, Bunse A, Schwarz C, Piotrowski M, Kück U (2006) Chloroplast heat shock protein Cpn60 from Chlamydomonas reinhardtii exhibits a novel function as a group II intron-specific RNA-binding protein. FEBS Lett 580:4527–4532

    Article  CAS  PubMed  Google Scholar 

  • Bassan M, Zamostiano R, Giladi E, Davidson A, Wollman Y, Pitman J, Hauser J, Brenneman DE, Gozes I (1998) The identification of secreted heat shock 60 -like protein from rat glial cells and a human neuroblastoma cell line. Neurosci Lett 250:37–40

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Benjamin CL, Ullrich SE, Kripke ML, Ananthaswamy HN (2008) p53 tumor suppressor gene: a critical molecular target for UV induction and prevention of skin cancer. Photochem Photobiol 84:55–62

    CAS  PubMed  Google Scholar 

  • Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64:442–451

    Article  CAS  PubMed  Google Scholar 

  • Birk OS, Douek DC, Elias D, Takacs K, Dewchand H, Gur SL, Walker MD, van der Zee R, Cohen IR, Altmann DM (1996) A role of Hsp60 in autoimmune diabetes: analysis in a transgenic model. Proc Natl Acad Sci 93:1032–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bockova J, Elias D, Cohen IR (1997) Treatment of NOD diabetes with a novel peptide of the hsp60 molecule induces Th2-type antibodies. J Autoimmun 10:323–329

    Article  CAS  PubMed  Google Scholar 

  • Campanella C, Bucchieri F, Merendino AM, Fucarino A, Burgio G, Corona DFV, Barbieri G, David S, Farina F, Zummo G et al (2012) The Odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS One:7, e42008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappello F, David S, Rappa F, Bucchieri F, Marasà L, Bartolotta TE, Farina F, Zummo G (2005) The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC Cancer 5:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cappello F, Conway de Macario E, Marasà L, Zummo G, Macario AJL (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809

    Article  CAS  PubMed  Google Scholar 

  • Cappello F, Caramori G, Campanella C, Vicari C, Gnemmi I, Zanini A, Spanevello A, Capelli A, La Rocca G, Anzalone R et al (2011) Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS One 6:e28200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiwatanasirikul K-A, Sala A (2011) The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60. Cell Death Dis 2:e219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301

    CAS  PubMed  Google Scholar 

  • Chang YH, Pearson CM, Abe C (1980) Adjuvant polyarthritis. IV. Induction by a synthetic adjuvant: immunologic, histopathologic, and other studies. Arthritis Rheum 23:62–71

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang J, Shao C, Liu S, Yu Y, Wang Q, Cao X (2006) Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur J Immunol 36:1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Cheng MY, Hartl F-U, Martin J, Pollock RA, Kalousek F, Neuper W, Hallberg EM, Hallberg RL, Horwich AL (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625

    Article  CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  • Christensen JH, Nielsen MN, Hansen J, Füchtbauer A, Füchtbauer E-M, West M, Corydon TJ, Gregersen N, Bross P (2010) Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 15:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Sfady M, Pevsner-Fischer M, Margalit R, Cohen IR (2009) Heat shock protein 60, via MyD88 innate signaling, protects B cells from apoptosis, spontaneous and induced. J Immunol Baltim Md 1950 183:890–896

    CAS  Google Scholar 

  • Cong Y, Baker ML, Jakana J, Woolford D, Miller EJ, Reissmann S, Kumar RN, Redding-Johanson AM, Batth TS, Mukhopadhyay A et al (2010) 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc Natl Acad Sci U S A 107:4967–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromartie WJ, Craddock JG, Schwab JH, Anderle SK, Yang CH (1977) Arthritis in rats after systemic injection of streptococcal cells or cell walls. J Exp Med 146:1585–1602

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Heat shock protein 10 and signal transduction: a “capsula eburnea” of carcinogenesis? Cell Stress Chaperones 11:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Kleer I, Vercoulen Y, Klein M, Meerding J, Albani S, van der Zee R, Sawitzki B, Hamann A, Kuis W, Prakken B (2010) CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype. J Immunol Baltim Md 1950 185:2071–2079

    Google Scholar 

  • Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaraj S, Dasu MR, Park SH, Jialal I (2009) Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 52:1665–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Felice V, David S, Cappello F, Farina F, Zummo G (2005) Is chlamydial heat shock protein 60 a risk factor for oncogenesis? Cell Mol Life Sci CMLS 62:4–9

    Article  PubMed  CAS  Google Scholar 

  • Dominguez MDC, Lorenzo N, Barbera A, Darrasse-Jeze G, Hernández MV, Torres A, Hernández I, Gil R, Klatzmann D, Padrón G (2011) An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant-induced arthritis. Autoimmunity 44:471–482

    Article  CAS  Google Scholar 

  • Dunn AY, Melville MW, Frydman J (2001) Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT. J Struct Biol 135:176–184

    Article  CAS  PubMed  Google Scholar 

  • Elias D, Meilin A, Ablamunits V, Birk OS, Carmi P, Könen-Waisman S, Cohen IR (1997) Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various β-cell antigens. Diabetes 46:758–765

    Article  CAS  PubMed  Google Scholar 

  • Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu Rev Biochem 60:321–347

    Article  CAS  PubMed  Google Scholar 

  • Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614–619

    Article  CAS  PubMed  Google Scholar 

  • Flohé SB, Brüggemann J, Lendemans S, Nikulina M, Meierhoff G, Flohé S, Kolb H (2003) Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol Baltim Md 1950 170:2340–2348

    Google Scholar 

  • Frydman J, Nimmesgern E, Erdjument-Bromage H, Wall JS, Tempst P, Hartl FU (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J 11:4767–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdiero M, de l’Ero GC, Marcatili A (1997) Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun 65:699–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao B, Tsan M-F (2003a) Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor α from murine macrophages. J Biol Chem 278:22523–22529

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Tsan M-F (2003b) Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor α release by murine macrophages. J Biol Chem 278:174–179

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70:8988–8993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh YC, Yap CT, Huang BH, Cronshaw AD, Leung BP, Lai PBS, Hart SP, Dransfield I, Ross JA (2011) Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis. Cell Mol Life Sci CMLS 68:1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337:44–47

    Article  CAS  PubMed  Google Scholar 

  • Goloubinoff P, Diamant S, Weiss C, Azem A (1997) GroES binding regulates GroEL chaperonin activity under heat shock. FEBS Lett 407:215–219

    Article  CAS  PubMed  Google Scholar 

  • Green DR (2006) At the gates of death. Cancer Cell 9:328–330

    Article  CAS  PubMed  Google Scholar 

  • Grundtman C, Wick G (2011) The autoimmune concept of atherosclerosis. Curr Opin Lipidol 22:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gülden E, Mollérus S, Brüggemann J, Burkart V, Habich C (2008) Heat shock protein 60 induces inflammatory mediators in mouse adipocytes. FEBS Lett 582:2731–2736

    Article  PubMed  CAS  Google Scholar 

  • Gülden E, Märker T, Kriebel J, Kolb-Bachofen V, Burkart V, Habich C (2009) Heat shock protein 60: evidence for receptor-mediated induction of proinflammatory mediators during adipocyte differentiation. FEBS Lett 583:2877–2881

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106:2727–2733

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292:H3052–H3056

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Ramachandra NB, Bowes T, Singh B (2008) Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp 291:59–68 discussion 69–73, 137–140

    Article  CAS  PubMed  Google Scholar 

  • Habich C, Burkart V (2007) Heat shock protein 60: regulatory role on innate immune cells. Cell Mol Life Sci CMLS 64:742–751

    Article  CAS  PubMed  Google Scholar 

  • Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol Baltim Md 1950 168:569–576

    CAS  Google Scholar 

  • Habich C, Kempe K, van der Zee R, Rümenapf R, Akiyama H, Kolb H, Burkart V (2005) Heat shock protein 60: specific binding of lipopolysaccharide. J Immunol Baltim Md 1950 174:1298–1305

    CAS  Google Scholar 

  • Hansen JJ, Bross P, Westergaard M, Nielsen MN, Eiberg H, Børglum AD, Mogensen J, Kristiansen K, Bolund L, Gregersen N (2003) Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum Genet 112:71–77

    Article  CAS  PubMed  Google Scholar 

  • Hayoun D, Kapp T, Edri-Brami M, Ventura T, Cohen M, Avidan A, Lichtenstein RG (2012) HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J 279:2083–2095

    Article  CAS  PubMed  Google Scholar 

  • Hogervorst EJM, Boog CJP, Wagenaar JPA, Wauben MHM, van der Zee R, van Eden W (1991) T cell reactivity to an epitope of the mycobacterial 65-kDa heat-shock protein (hsp 65) corresponds with arthritis susceptibility in rats and is regulated by hsp 65-specific cellular responses. Eur J Immunol 21:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Hunt JF, Weaver AJ, Landry SJ, Gierasch L, Deisenhofer J (1996) The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379:37–45

    Article  CAS  PubMed  Google Scholar 

  • Jindal S, Dudani AK, Singh B, Harley CB, Gupta RS (1989) Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol Cell Biol 9:2279–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juwono J, Martinus RD (2016) Does Hsp60 provide a link between mitochondrial stress and inflammation in diabetes mellitus? J Diabetes Res 2016:e8017571

    Article  CAS  Google Scholar 

  • Kaufman BA, Kolesar JE, Perlman PS, Butow RA (2003) A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J Cell Biol 163:457–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Kim EM, Lee J, Yang WH, Park TY, Kim YM, Cho JW (2006) Heat shock protein 60 modified with O-linked N-acetylglucosamine is involved in pancreatic β-cell death under hyperglycemic conditions. FEBS Lett 580:2311–2316

    Article  CAS  PubMed  Google Scholar 

  • Kim S-C, Stice JP, Chen L, Jung JS, Gupta S, Wang Y, Baumgarten G, Trial J, Knowlton AA (2009) Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ Res 105:1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotlo K, Xing Y, Lather S, Grillon JM, Johnson K, Skidgel RA, Solaro RJ, Danziger RS (2014) PR65A phosphorylation regulates PP2A complex signaling. PLoS One 9:e85000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leach MD, Stead DA, Argo E, Brown AJP (2011) Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol Biol Cell 22:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leavenworth JW, Tang X, Kim H-J, Wang X, Cantor H (2013) Amelioration of arthritis through mobilization of peptide-specific CD8+ regulatory T cells. J Clin Invest 123:1382–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR (2008) A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 28:2320–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106:196–201

    Article  CAS  PubMed  Google Scholar 

  • Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787–1792

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Madan D, Rye HS (2008) GroEL stimulates protein folding through forced unfolding. Nat Struct Mol Biol 15:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorca O, Carrascosa JL, Valpuesta JM (1996) Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding. J Biol Chem 271:68–76

    Article  CAS  PubMed  Google Scholar 

  • Llorca O, Martín-Benito J, Ritco-Vonsovici M, Grantham J, Hynes GM, Willison KR, Carrascosa JL, Valpuesta JM (2000) Eukaryotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. EMBO J 19:5971–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund PA, Large AT, Kapatai G (2003) The chaperonins: perspectives from the Archaea. Biochem Soc Trans 31:681–685

    Article  CAS  PubMed  Google Scholar 

  • Magnoni R, Palmfeldt J, Christensen JH, Sand M, Maltecca F, Corydon TJ, West M, Casari G, Bross P (2013) Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiol Dis 54:12–23

    Article  CAS  PubMed  Google Scholar 

  • Märker T, Kriebel J, Wohlrab U, Habich C (2010) Heat shock protein 60 and adipocytes: characterization of a ligand-receptor interaction. Biochem Biophys Res Commun 391:1634–1640

    Article  PubMed  CAS  Google Scholar 

  • Märker T, Sell H, Zillessen P, Glöde A, Kriebel J, Ouwens DM, Pattyn P, Ruige J, Famulla S, Roden M et al (2012) Heat shock protein 60 as a mediator of adipose tissue inflammation and insulin resistance. Diabetes 61:615–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Märker T, Kriebel J, Wohlrab U, Burkart V, Habich C (2014) Adipocytes from New Zealand obese mice exhibit aberrant proinflammatory reactivity to the stress signal heat shock protein 60. J Diabetes Res 2014:187153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mendoza JA, Rogers E, Lorimer GH, Horowitz PM (1991) Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J Biol Chem 266:13044–13049

    CAS  PubMed  Google Scholar 

  • Merendino AM, Bucchieri F, Campanella C, Marcianò V, Ribbene A, David S, Zummo G, Burgio G, Corona DFV, Conway de Macario E et al (2010) Hsp60 is actively secreted by human tumor cells. PLoS One 5:e9247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murai N, Makino Y, Yoshida M (1996) GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps. J Biol Chem 271:28229–28234

    Article  CAS  PubMed  Google Scholar 

  • Nativel B, Marimoutou M, Thon-Hon VG, Gunasekaran MK, Andries J, Stanislas G, Planesse C, Da Silva CR, Césari M, Iwema T et al (2013) Soluble HMGB1 is a novel adipokine stimulating IL-6 secretion through RAGE receptor in SW872 preadipocyte cell line: contribution to chronic inflammation in fat tissue. PLoS One 8:e76039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen KL, Cowan NJ (1998) A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol Cell 2:93–99

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, McLennan N, Masters M, Cowan NJ (1999) A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J Bacteriol 181:5871–5875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi K, Burkart V, Flohé S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol Baltim Md 1950 164:558–561

    CAS  Google Scholar 

  • Ohue R, Hashimoto K, Nakamoto M, Furukawa Y, Masuda T, Kitabatake N, Tani F (2011) Bacterial heat shock protein 60, GroEL, can induce the conversion of naïve T cells into a CD4 CD25(+) Foxp3-expressing phenotype. J Innate Immun 3:605–613

    Article  CAS  PubMed  Google Scholar 

  • Osterloh A, Meier-Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M (2004) Lipopolysaccharide-free heat shock protein 60 activates T cells. J Biol Chem 279:47906–47911

    Article  CAS  PubMed  Google Scholar 

  • Osterloh A, Veit A, Gessner A, Fleischer B, Breloer M (2008) Hsp60-mediated T cell stimulation is independent of TLR4 and IL-12. Int Immunol 20:433–443

    Article  CAS  PubMed  Google Scholar 

  • Pace A, Barone G, Lauria A, Martorana A, Piccionello AP, Pierro P, Terenzi A, Almerico AM, Buscemi S, Campanella C et al (2013) Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design. Curr Pharm Des 19:2757–2764

    Article  CAS  PubMed  Google Scholar 

  • Pearson CM (1956) Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N 91:95–101

    Article  CAS  Google Scholar 

  • Pei W, Tanaka K, Huang SC, Xu L, Liu B, Sinclair J, Idol J, Varshney GK, Huang H, Lin S et al (2016) Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. Npj Regen Med 1:16013

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K et al (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics MCP 10:M111.012658

    Article  PubMed  CAS  Google Scholar 

  • Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118:1587–1594

    Article  CAS  PubMed  Google Scholar 

  • Planesse C, Nativel B, Iwema T, Gasque P, Robert-Da Silva C, Viranaïcken W (2015) Recombinant human HSP60 produced in ClearColi™ BL21(DE3) does not activate the NFκB pathway. Cytokine 73:190–195

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Multhoff G (2008) Cell stress proteins in extracellular fluids: friend or foe? Novartis Found Symp 291:86–95 discussion 96–100, 137–140

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Bulmer J, Hanks BM, Wright BH (1999) Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4:29–35

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    Article  CAS  PubMed  Google Scholar 

  • Priya S, Sharma SK, Sood V, Mattoo RUH, Finka A, Azem A, De Los Rios P, Goloubinoff P (2013) GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Proc Natl Acad Sci U S A 110:7199–7204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranford JC, Coates ARM, Henderson B (2000) Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med 2:1–17

    Article  CAS  PubMed  Google Scholar 

  • Rea IM, McNerlan S, Pockley AG (2001) Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp Gerontol 36:341–352

    Article  CAS  PubMed  Google Scholar 

  • Retzlaff C, Yamamoto Y, Okubo S, Hoffman PS, Friedman H, Klein TW (1996) Legionella pneumophila heat-shock protein-induced increase of interleukin-1 beta mRNA involves protein kinase C signalling in macrophages. Immunology 89:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseman AM, Chen S, White H, Braig K, Saibil HR (1996) The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87:241–251

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger K, Dembny P, Derkow K, Engel O, Krüger C, Wolf SA, Kettenmann H, Schott E, Meisel A, Lehnardt S (2015) Intrathecal heat shock protein 60 mediates neurodegeneration and demyelination in the CNS through a TLR4- and MyD88-dependent pathway. Mol Neurodegener 10:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S (1999) Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 18:2040–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schett G, Metzler B, Kleindienst R, Amberger A, Recheis H, Xu Q, Wick G (1999) Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response. Cardiovasc Res 42:685–695

    Article  CAS  PubMed  Google Scholar 

  • Shamaei-Tousi A, Stephens JW, Bin R, Cooper JA, Steptoe A, Coates ARM, Henderson B, Humphries SE (2006) Association between plasma levels of heat shock protein 60 and cardiovascular disease in patients with diabetes mellitus. Eur Heart J 27:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Shamaei-Tousi A, Steptoe A, O’Donnell K, Palmen J, Stephens JW, Hurel SJ, Marmot M, Homer K, D’Aiuto F, Coates ARM et al (2007a) Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors. Cell Stress Chaperones 12:384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamaei-Tousi A, D’Aiuto F, Nibali L, Steptoe A, Coates ARM, Parkar M, Donos N, Henderson B (2007b) Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease. PLoS One 2:e1198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sigal LH, Williams S, Soltys B, Gupta R (2001) H9724, a monoclonal antibody to Borrelia burgdorferi’s flagellin, binds to heat shock protein 60 (HSP60) within live neuroblastoma cells: a potential role for HSP60 in peptide hormone signaling and in an autoimmune pathogenesis of the neuropathy of Lyme disease. Cell Mol Neurobiol 21:477–495

    Article  CAS  PubMed  Google Scholar 

  • Sigler PB, Xu Z, Rye HS, Burston SG, Fenton WA, Horwich AL (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Patel HV, Ridley RG, Freeman KB, Gupta RS (1990) Mitochondrial import of the human chaperonin (HSP60) protein. Biochem Biophys Res Commun 169:391–396

    Article  CAS  PubMed  Google Scholar 

  • Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, Meldolesi J (2009) The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 110:284–294

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Tian E, Liu C, Wang Q, Deng H (2013) Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS One 8:e59610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry DF, McCormick M, Andersen S, Pennington J, Schoenhofen E, Palaima E, Bausero M, Ogawa K, Perls TT, Asea A (2004) Cardiovascular disease delay in centenarian offspring: role of heat shock proteins. Ann N Y Acad Sci 1019:502–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trayhurn P, Wood IS (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 33:1078–1081

    Article  CAS  PubMed  Google Scholar 

  • Tsan M-F, Gao B (2004) Endogenous ligands of Toll-like receptors. J Leukoc Biol 76:514–519

    Article  CAS  PubMed  Google Scholar 

  • Tsan M-F, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    Article  CAS  PubMed  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Häcker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    Article  CAS  PubMed  Google Scholar 

  • Vachharajani V, Granger DN (2009) Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life 61:424–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Eden W, Tholet JER, van der Zee R, Noordzij A, van Embden JDA, Hensen EJ, Cohen IR (1988) Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173

    Article  PubMed  Google Scholar 

  • van Roon JA, van Eden W, van Roy JL, Lafeber FJ, Bijlsma JW (1997) Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J Clin Invest 100:459–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Viitanen PV, Gatenby AA, Lorimer GH (1992) Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci Publ Protein Soc 1:363–369

    Article  CAS  Google Scholar 

  • Wang Y, Chen L, Hagiwara N, Knowlton AA (2010) Regulation of heat shock protein 60 and 72 expression in the failing heart. J Mol Cell Cardiol 48:360–366

    Article  CAS  PubMed  Google Scholar 

  • Wick G, Kleindienst R, Dietrich H, Xu Q (1992) Is atherosclerosis an autoimmune disease? Trends Food Sci Technol 3:114–119

    Article  CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Zhu H, Guo L, Ruan Y, Wang L, Sun L, Zhou L, Wu W, Yun X, Shen A et al (2010) Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J Immunol Baltim Md 1950 185:2306–2313

    CAS  Google Scholar 

  • Xu Q (2002) Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 22:1547–1559

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Schett G, Perschinka H, Mayr M, Egger G, Oberhollenzer F, Willeit J, Kiechl S, Wick G (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102:14–20

    Article  CAS  PubMed  Google Scholar 

  • Yaffe MB, Farr GW, Miklos D, Horwich AL, Sternlicht ML, Sternlicht H (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358:245–248

    Article  CAS  PubMed  Google Scholar 

  • Yam AY, Xia Y, Lin H-TJ, Burlingame A, Gerstein M, Frydman J (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15:1255–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, He M, Cheng L, Chen Y, Zhou L, Zeng H, Pockley AG, Hu FB, Wu T (2008) Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese. Circulation 118:2687–2693

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Sun L, Zhu H, Wang L, Wu W, Xie J, Gu J (2012) Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem Int 61:1021–1035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

To servier for providing design medical art for figure. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wildriss Viranaïcken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nativel, B., Planesse, C., Gasque, P., Da Silva, C.R., Meihac, O., Viranaïcken, W. (2019). Biology of Extracellular HSP60. In: Asea, A., Kaur, P. (eds) Chaperokine Activity of Heat Shock Proteins . Heat Shock Proteins, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-02254-9_3

Download citation

Publish with us

Policies and ethics