Skip to main content

Other Miscellaneous Semiconductors and Related Binary, Ternary, and Quaternary Compounds

  • Chapter
  • First Online:
Semiconductors

Abstract

The ability to tailor the energy gap of semiconductors , as a function of their applications has led to Bandgap Engineering . From a materials perspective, Bandgap Engineering has been made possible, to a large extent, by Semiconductor Alloys . The applications of these alloys include solar cells, solid-state lasers, detectors, Light Emitting Diodes (LEDs), and Opto Electronic Integrated Circuits (OEICs). In this chapter, we discuss the electronic, optical, and elastic/mechanical properties of various semiconductor alloys .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi S (2004) Handbook on physical properties of semiconductors, vol 2. Kluwer Academic, New York

    Google Scholar 

  2. Elyukhin VA, Sanchez-R VM, Elyukhina OV (2004) Self-assembling in AlxGa1−xNyAs1−y alloys. Appl Phys Lett 85(10):1704–1706

    Article  CAS  Google Scholar 

  3. Peter YY, Cardona, M (2005) Fundamentals of semiconductors: physics and materials properties, 3rd edn. Springer, Berlin, Germany

    Google Scholar 

  4. Plummer JD, Deal MD, Griffin PB (2000) Silicon VLSI technology: fundamentals, practice and modeling. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  5. Moshe H, Mastai Y (2013) Atomic layer deposition on self-assembled monolayers, chapter 3, materials science—Advanced topics, InTech, pp 63–184. http://dx.doi.org/10.5772/54814

  6. Piotrowski A, Madejczyk P, Gawron W, Klos K, Pawluczyk J, Rutkowski J, Piotrowski J, Rogalski A (2007) Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors. Infrared Phys Technol 49(3):173–182

    Article  CAS  Google Scholar 

  7. Ibach H, Lüth H (2003) Solid state physics, 3rd edn. Springer, Berlin, Germany

    Google Scholar 

  8. Hicks HGB, Manley DF (1969) High purity GaAs by liquid phase epitaxy. Solid State Commun 7(20):1463–1465

    Article  CAS  Google Scholar 

  9. Moustakas TD, Pankove JI, Hamakawa Y (1992) Wide band gap semiconductors. Materials Research Society, Pittsburgh, Pennsylvania

    Google Scholar 

  10. Neudeck PG (1995) Progress in silicon carbide semiconductor electronics technology. J Electron Mater 24(4):283–288

    Article  CAS  Google Scholar 

  11. Bhatnagar M, Baliga BJ (1993) Comparison of 6H–SiC, 3C–SiC, and Si for power devices. IEEE Trans Electron Devices 40(3):645–655

    Article  CAS  Google Scholar 

  12. Kung P, Yasan A, McClintock R, Darvish S, Mi K, Razeghi M (2002) Future of AlxGa1−xN materials and device technology for ultraviolet photodetectors. In: SPIE proceedings, vol 4650. pp 199–206

    Google Scholar 

  13. Saxler A, Mitchel WC, Kung P, Razeghi M (1999) Aluminum gallium nitride short-period superlattices doped with magnesium. Appl Phys Lett 74(14):2023–2025

    Article  CAS  Google Scholar 

  14. Suzuki M, Nishio J, Onomura M, Hongo C (1998) Doping characteristics and electrical properties of Mg-doped AlGaN grown by atmospheric-pressure MOCVD. J Cryst Growth 189–190:511–515

    Article  Google Scholar 

  15. Haase M, Qiu J, DePuydt JM, Cheng H (1991) Blue-green laser diodes. Appl Phys Lett 59(11):1272–1274

    Article  CAS  Google Scholar 

  16. Zeng L, Cavus A, Yang BX, Tamargo MC, Bambha N, Gray A, Semendy F (1997) Molecular beam epitaxial growth of lattice-matched ZnxCdyMg1−x−ySe quaternaries on InP substrates. J Cryst Growth 175–176(1):541–545

    Article  Google Scholar 

  17. Pavlidis D (2006) Wide-and narrow-bandgap semiconductor materials. Thema Forschung 2:38–41

    Google Scholar 

  18. Capper P, Garland J, Baker IM (2010) HgCdTe photovoltaic infrared detectors. In: Mercury cadmium telluride. Wiley Hoboken, New Jersey, pp 447–467

    Google Scholar 

  19. Capper P (2007) Narrow-bandgap II–VI semiconductors: growth. In: Springer handbook of electronic and photonic materials. Springer, Berlin, Germany, pp 303–324

    Chapter  Google Scholar 

  20. Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Progress in solar PV technology: Research and achievement. Renew Sustain Energy Rev 20:443–461

    Article  CAS  Google Scholar 

  21. Iles PA (2001) Evolution of space solar cells. Sol Energy Mater Sol Cells 68(1):1–13

    Article  CAS  Google Scholar 

  22. Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl Phys Lett 62(22):2582–2851

    Article  Google Scholar 

  23. Hegedus SS, McCandless BE (2005) CdTe contacts for CdTe/CdS solar cells: effect of Cu thickness, surface preparation and recontacting on device performance and stability. Sol Energy Mater Sol Cells 88(1):75–95

    Article  CAS  Google Scholar 

  24. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovoltaics Res Appl 16(3):235–239

    Article  CAS  Google Scholar 

  25. Doverspike K, Dwight K, Wold A (1990) Preparation and characterization of copper zinc germanium sulfide selenide (Cu2ZnGeS4-ySey). Chem Mater 2(2):194–197

    Article  CAS  Google Scholar 

  26. Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131(33):11672–11673

    Article  CAS  Google Scholar 

  27. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, New York

    Google Scholar 

  28. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford, UK

    Google Scholar 

  29. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  30. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249

    Article  CAS  Google Scholar 

  31. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097

    Article  CAS  Google Scholar 

  32. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43(20):1494–1497

    Article  CAS  Google Scholar 

  33. Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B 47(16):10142–10153

    Article  CAS  Google Scholar 

  34. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  35. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823–837

    Article  CAS  Google Scholar 

  36. Cohen ML (1985) Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B 32(12):7988–7991

    Article  CAS  Google Scholar 

  37. Cohen ML (1993) Predicting useful materials. Science 261(5119):307–308

    Article  CAS  Google Scholar 

  38. Kamran S, Chen K, Chen L (2008) Semiempirical formulae for elastic moduli and brittleness of diamondlike and zinc-blende covalent crystals. Phys Rev B 77(9):094109–094113

    Article  CAS  Google Scholar 

  39. Phillips JC (1973) Bonds and bands in semiconductors. Academic Press, New York

    Chapter  Google Scholar 

  40. Roundy D, Krenn CR, Cohen ML, Morris JW (1999) Ideal shear strengths of fcc aluminum and copper. Phys Rev Lett 82(13):2713–2716

    Article  CAS  Google Scholar 

  41. Martin RM (1970) Elastic properties of ZnS structure semiconductors. Phys Rev B 1(10):4005–4011

    Article  Google Scholar 

  42. Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y (2003) Hardness of covalent crystals. Phys Rev Lett 91(1):015502–015505

    Article  CAS  Google Scholar 

  43. Chen D, Ravindra N (2013) Elastic properties of diamond and zincblende covalent crystals. Emerg Mater Res 2(1):58–63

    Article  CAS  Google Scholar 

  44. Lee DN (2003) Elastic properties of thin films of cubic system. Thin Solid Films 434(1):183–189

    Article  CAS  Google Scholar 

  45. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook, 2nd edn. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  46. Lee DH, Joannopoulos JD (1982) Simple scheme for deriving atomic force constants: application to SiC. Phys Rev Lett 48(26):1846–1849

    Article  CAS  Google Scholar 

  47. Lambrecht WRL, Segall B, Methfessel M, Schilfgaarde M (1991) Calculated elastic constants and deformation potentials of cubic SiC. Phys Rev B 44(8):3685–3694

    Article  CAS  Google Scholar 

  48. Azuhata T, Sota T, Suzuki K (1996) Elastic constants of III–V compound semiconductors: modification of keyes’ relation. J Phys Condens Matter 8(18):3111–3119

    Article  CAS  Google Scholar 

  49. Sherwin M, Drummond T (1991) Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on β-SiC. J Appl Phys 69(12):8423–8425

    Article  CAS  Google Scholar 

  50. Xiong Q, Duarte N, Tadigadapa S, Eklund PC (2006) Force-deflection spectroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett 6(9):1904–1909

    Article  CAS  Google Scholar 

  51. Deligoz EK, Colakoglu K, Ciftci Y (2006) Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B 373(1):124–130

    Article  CAS  Google Scholar 

  52. Alper T, Saunders G (1967) The elastic constants of mercury telluride. J Phys Chem Solids 28(9):1637–1642

    Article  CAS  Google Scholar 

  53. Chen D, Ravindra NM (2012) Pressure dependence of energy gap of III–V and II–VI ternary semiconductors. J Mater Sci 47(15):5735–5742

    Article  CAS  Google Scholar 

  54. De Bernabe A, Prieto C, Gonzalez L, Every AG (1999) Elastic constants of InxGa1−xAs and InxGa1−xP determined using surface acoustic waves. J Phys: Condens Matter 11(28):L323–L327

    Google Scholar 

  55. Yeh CY, Chen AB, Sher A (1991) Formation energies, bond lengths, and bulk moduli of ordered semiconductor alloys from tight-binding calculations. Phys Rev B 43(11):9138–9151

    Article  CAS  Google Scholar 

  56. Bouarissa N (2003) Compositional dependence of the elastic constants and the Poisson ratio of GaxIn1−xSb. Mater Sci Eng B 100(3):280–285

    Article  CAS  Google Scholar 

  57. Maheswaranathan P, Sladek RJ, Debska U (1985) Elastic constants and their pressure dependences in Cd1−xMnxTe with 0 < x < 0.52 and in Cd0.52Zn0.48Te. Phys Rev B 31(8):5212–5216

    Google Scholar 

  58. Brinck T, Murray JS, Politzer P (1993) Polarizability and volume. J Chem Phys 98(5):4305–4306

    Article  CAS  Google Scholar 

  59. Gilman JJ (2003) Electronic basis of the strength of materials. Cambridge University Press, Cambridge, UK

    Google Scholar 

  60. Hildebrand O, Kuebart W, Pilkuhn M (1980) Resonant enhancement of impact in Ga1−xAlxSb. Appl Phys Lett 37(9):801–803

    Article  CAS  Google Scholar 

  61. Kurtz SR, Biefeld RM, Dawson LR, Baucom KC, Howard AJ (1994) Midwave (4 μm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions. Appl Phys Lett 64(7):812–814

    Article  CAS  Google Scholar 

  62. Menna RJ, Capewell DR, Martinelli RU, York PK, Enstrom RE (1991) 3.06 μm InGaAsSb/InPSb diode lasers grown by organometallic vapor-phase epitaxy. Appl Phys Lett 59(17):2127–2129

    Article  CAS  Google Scholar 

  63. Bellaiche L, Wei SH, Zunger A (1996) Localization and percolation in semiconductor alloys: GaAsN versus GaAsP. Phys Rev B 54(24):17568–17576

    Article  CAS  Google Scholar 

  64. Bellaiche L, Wei SH, Zunger A (1997) Composition dependence of interband transition intensities in GaPN, GaAsN, and GaPAs alloys. Phys Rev B 56(16):10233–10240

    Article  CAS  Google Scholar 

  65. Wei SH, Zunger A (1996) Giant and composition-dependent optical bowing coefficient in GaAsN alloys. Phys Rev Lett 76(4):664–667

    Article  CAS  Google Scholar 

  66. Landau LD, Lifshits EM (1969) Statistical physics. Pergamon Press, Oxford, UK

    Google Scholar 

  67. Mbaye AA, Wood DM, Zunger A (1988) Stability of bulk and pseudomorphic epitaxial semiconductors and their alloys. Phys Rev B 37(6):3008–3024

    Article  CAS  Google Scholar 

  68. Yeo YC, Li MF, Chong TC, Yu PY (1997) Theoretical study of the energy-band structure of partially CuPt-ordered Ga0.5In0.5P. Phys Rev B 55(24):16414–16419

    Article  CAS  Google Scholar 

  69. Behet M, Stoll B, Heime K (1992) Lattice-matched growth of InPSb on InAs by low-pressure plasma MOVPE. J Cryst Growth 124(1):389–394

    Article  CAS  Google Scholar 

  70. Jou MJ, Cheng YT, Jen HR, Stringfellow GB (1988) Organometallic vapor phase epitaxial growth of a new semiconductor alloy: GaP1−xSbx. Appl Phys Lett 52(7):549–551

    Article  CAS  Google Scholar 

  71. Wei SH, Zunger A (1989) Band gaps and spin-orbit splitting of ordered and disordered AlxGa1−xAs and GaAsxSb1−x alloys. Phys Rev B 39(5):3279–3304

    Article  CAS  Google Scholar 

  72. Stringfellow GB (1989) Ordered structures and metastable alloys grown by OMVPE. J Cryst Growth 98(1):108–117

    Article  CAS  Google Scholar 

  73. Wei SH, Ferreira LG, Bernard JE, Zunger A (1990) Electronic properties of random alloys: Special quasirandom structures. Phys Rev B 42(15):9622–9649

    Article  CAS  Google Scholar 

  74. Bechstedt F, Del Sole R (1988) Analytical treatment of band-gap underestimates in the local-density approximation. Phys Rev B 38(11):7710–7716

    Article  CAS  Google Scholar 

  75. Wei SH, Zunger A (1990) Band-gap narrowing in ordered and disordered semiconductor alloys. Appl Phys Lett 56(7):662–664

    Article  CAS  Google Scholar 

  76. Fedders PA, Muller MW (1984) Mixing enthalpy and composition fluctuations in ternary III–V semiconductor alloys. J Phys Chem Solids 45(6):685–688

    Article  CAS  Google Scholar 

  77. Reihlen EH, Jou MJ, Jaw DH, Stringfellow GB (1990) Optical absorption and emission of GaP1−xSbx alloys. J Appl Phys 68(2):760–767

    Article  CAS  Google Scholar 

  78. Shimomura H, Anan T, Sugou S (1996) Growth of AlPSb and GaPSb on InP by gas-sthece molecular beam epitaxy. J Cryst Growth 162(3):121–125

    Article  CAS  Google Scholar 

  79. Jou MJ, Cheng YT, Jen HR, Stringfellow GB (1988) OMVPE growth of the new semiconductor alloys GaP1−xSbx and InP1−xSbx. J Cryst Growth 93(1):62–69

    Article  CAS  Google Scholar 

  80. Reihlen EH, Jou MJ, Fang ZM, Stringfellow GB (1990) Optical absorption and emission of InP1−xSbx alloys. J Appl Phys 68(9):4604–4609

    Article  CAS  Google Scholar 

  81. Aramoto T, Kumazawa S, Higuchi H, Arita T, Shibutani S, Nishio T, Nakajima J, Tsuji M, Hanafusa A, Hibino T, Omira K, Ohyama H, Murozono M (1997) 16.0% efficient thin-film CdS/CdTe solar cells. Jpn J Appl Phys 36(10):6304–6305

    Article  CAS  Google Scholar 

  82. Wang D, Hou Z, Bai Z (2011) Study of interdiffusion reaction at the CdS/CdTe interface. J Mater Res 26(05):697–705

    Article  CAS  Google Scholar 

  83. Fischer A, Anthony L, Compaan AD (1998) Raman analysis of short-range clustering in laser-deposited CdSxTe1−x films. Appl Phys Lett 72(20):2559–2561

    Article  CAS  Google Scholar 

  84. Ebina A, Yamamoto M, Takahashi T (1972) Reflectivity of ZnSexTe1−x single crystals. Phys Rev B 6(10):3786–3791

    Article  CAS  Google Scholar 

  85. Lange H, Donecker J, Friedrich H (1976) Electroreflectance and wavelength modulation study of the direct and indirect fundamental transition region of In1−xGaxP. Physica Status Solidi (B) 73(2):633–639

    Article  CAS  Google Scholar 

  86. Chen D, Ravindra NM (2013) Structural, thermodynamic and electronic properties of GaPxSb1−x and InPxSb1−x alloys. Emerg Mater Res 2(2):109–113

    Article  CAS  Google Scholar 

  87. Hopfield JJ (1960) Fine structure in the optical absorption edge of anisotropic crystals. J Phys Chem Solids 15(1):97–107

    Article  CAS  Google Scholar 

  88. Zakharov O, Rubio A, Blasé X, Cohen ML, Louie SG (1994) Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys Rev B 50(15):10780–10787

    Article  CAS  Google Scholar 

  89. Chadi DJ (1977) Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys Rev B 16(2):790–796

    Article  CAS  Google Scholar 

  90. Wei SH, Zunger A (1989) Negative spin-orbit bowing in semiconductor alloys. Phys Rev B 39(9):6279–6282

    Article  CAS  Google Scholar 

  91. Carrier P, Wei SH (2004) Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: Effects of p1/2 local orbitals and chemical trends. Phys Rev B 70(3):035212–035212-9

    Google Scholar 

  92. Van Vechten JA, Berolo O, Woolley JC (1972) Spin-orbit splitting in compositionally disordered semiconductors. Phys Rev Lett 29(20):1400–1403

    Article  Google Scholar 

  93. Wei K, Pollak FH, Freeouf JL, Shvydka D, Compaan AD (1999) Optical properties of CdTe1−xSx(0≤x≤1): experiment and modeling. J Appl Phys 85(10):7418–7425

    Article  CAS  Google Scholar 

  94. Lane DW (2006) A review of the optical band gap of thin film CdSxTe1−x. Sol Energy Mater Sol Cells 90(9):1169–1175

    Article  CAS  Google Scholar 

  95. Ohata K, Saraie J, Tanaka T (1973) Optical energy gap of the mixed crystal CdSxTe1−x. Jpn J Appl Phys 12(10):1641–1642

    Article  CAS  Google Scholar 

  96. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207–8215

    Article  CAS  Google Scholar 

  97. Heyd J, Scuseria GE, Ernzerhof M (2003) Erratum: Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207. J Chem Phys 124(21):219906–219906-1

    Google Scholar 

  98. Wei SH, Zhang SB, Zunger A (2000) First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J Appl Phys 87(3):1304–1311

    Article  CAS  Google Scholar 

  99. Gomyo A, Suzuki T, Kobayashi K, Kawata S, Hino I, Yuasa T (1987) Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band gap energy. Appl Phys Lett 50(11):673–675

    Article  CAS  Google Scholar 

  100. Kuan TS, Kuech TF, Wang WI, Wilkie EL (1985) Long-range order in AlxGa1−xAs. Phys Rev Lett 54(3):201–204

    Article  CAS  Google Scholar 

  101. Kurtz SR (1993) Anomalous electroreflectance spectrum of spontaneously ordered Ga0.5In0.5P. J Appl Phys 74(6):4130–4135

    Article  CAS  Google Scholar 

  102. Ruvimov S, Werner P, Scheerschmidt K, Gosele U, Heydenreich J, Richter U, Ledentsov NN, Grundmann M, Bimberg D, Ustinov VM, Yu Egorov A, Kopev PS, Alferov ZI (1995) Structural characterization of (In, Ga)As quantum dots in a GaAs matrix. Phys Rev B 51(20):14766–14769

    Article  CAS  Google Scholar 

  103. Wu C, Feng Z, Chang W, Yang C, Lin H (2012) Bond lengths and lattice structure of InP0.52Sb0.48 grown on GaAs. Appl Phy Lett 101(9):091902–091902-4

    Google Scholar 

  104. Zhong Z, Li JH, Kulik J, Chow PC, Norman AG, Mascarenhas A, Bai J, Golding TD, Moss SC (2001) Quadruple-period ordering along [110] in a GaAs0.87Sb0.13 alloy. Phys Rev B 63(3):033314

    Google Scholar 

  105. Franceschetti A, Zunger A (1994) Pressure dependence of optical transitions in ordered GaP/InP superlattices. Appl Phys Lett 65(23):2990–2992

    Article  CAS  Google Scholar 

  106. Wei SH, Laks DB, Zunger A (1993) Dependence of the optical properties of semiconductor alloys on the degree of long-range order. Appl Phys Lett 62(16):1937–1939

    Article  CAS  Google Scholar 

  107. Wei SH, Zunger A (1993) Erratum: Dependence of the optical properties of semiconductor alloys on the degree of long-range order. Appl Phys Lett 62:1937. Appl Phys Lett 63(9):1292

    Google Scholar 

  108. Wei SH, Zunger A (1998) Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals. Appl Phys Lett 72(16):2011–2013

    Article  CAS  Google Scholar 

  109. Baxter CS, Broom RF, Stobbs WM (1990) The characterization of the ordering of MOVPE grown III–V alloys using transmission electron microscopy. Surf Sci 228(1):102–107

    Article  CAS  Google Scholar 

  110. Baxter CS, Stobbs WM, Wilkie JH (1991) The morphology of ordered structures in III–V alloys: inferences from a TEM study. J Cryst Growth 112(2):373–385

    Article  CAS  Google Scholar 

  111. Morita E, Ikeda M, Kumagai O, Kanedo K (1988) Transmission electron microscopic study of the ordered structure in GaInP/GaAs epitaxially grown by metalorganic chemical vapor deposition. Appl Phys Lett 53(22):2164–2166

    Article  CAS  Google Scholar 

  112. Suzuki T, Gomyo A, Iijima S, Kobayashi K, Kawata S, Hino I, Yuasa T (1988) Band-gap energy anomaly and sublattice ordering in GaInP and AlGalnP grown by metalorganic vapor phase epitaxy. Jpn J Appl Phys 27(11):2098–2106

    Article  CAS  Google Scholar 

  113. Kondow M, Kakibayashi H, Minagawa S, Inoue Y, Nishino T, Hamakawa Y (1988) Influence of growth temperature on crystalline structure in Ga0.5In0.5P grown by organometallic vapor phase epitaxy. Appl Phys Lett 53(21):2053–2055

    Article  CAS  Google Scholar 

  114. Nishino T, Inoue Y, Hamakawa Y, Kondow M, Minagawa S (1988) Electroreflectance study of ordered Ga0.5In0.5P alloys grown on GaAs by organometallic vapor phase epitaxy. Appl Phys Lett 53(7):583–585

    Article  CAS  Google Scholar 

  115. Lee K, Lee S, Chang KJ (1995) Optical properties of ordered In0.5Ga0.5P alloys. Phys Rev B 52(22):15862–15866

    Google Scholar 

  116. Nee TW, Green AK (1990) Optical properties of InGaAs lattice-matched to InP. J Appl Phys 68(10):5314–5317

    Article  CAS  Google Scholar 

  117. Hakki BW, Jayaraman A, Kim CK (1970) Band structure of InGaP from pressure experiments. J Appl Phys 41(13):5291–5296

    Article  CAS  Google Scholar 

  118. Chen J, Sites JR, Spain IL, Hafich MJ, Robinson GY (1991) Band offset of GaAs/In0.48Ga0.52P measured under hydrostatic pressure. Appl Phys Lett 58(7):744–746

    Article  CAS  Google Scholar 

  119. Hill R (1974) Energy-gap variations in semiconductor alloys. J Phys C: Solid State Phys 7(3):521–526

    Article  CAS  Google Scholar 

  120. Hill R, Pitt GD (1975) The pressure and temperature dependence of electron energy-gaps in semiconductor alloys. Solid State Commun 17(6):739–742

    Article  CAS  Google Scholar 

  121. Van Vechten JA (1969) Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys Rev 182(3):891–905

    Article  Google Scholar 

  122. Van Vechten JA (1969) Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Phys Rev 187(3):1007–1020

    Google Scholar 

  123. Camphausen DL, Connell GAN, Paul W (1971) Calculation of energy-band pressure coefficients from the dielectric theory of the chemical bond. Phys Rev Lett 26(4):184–188

    Article  CAS  Google Scholar 

  124. Van Vechten JA, Bergstresser TK (1970) Electronic structures of semiconductor alloys. Phys Rev B 1(8):3351–3358

    Article  Google Scholar 

  125. Vurgaftman I, Meyer JR, Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875

    Article  CAS  Google Scholar 

  126. Adachi S (2009) Properties of semiconductor alloys: group-IV, III–V and II–VI semiconductors, vol 28. Wiley, Hoboken, New Jersey

    Google Scholar 

  127. Nicklas JW, Wilkins JW (2010), Accurate ab initio predictions of III–V direct-indirect band gap crossovers. Appl Phys Lett 97(9):091902–091902-3

    Article  CAS  Google Scholar 

  128. Tsang WT, Chiu TH, Chu SNG, Ditzenberger JA (1985) GaSbAs/AlGaSbAs superlattice lattice matched to InP prepared by molecular beam epitaxy. Appl Phys Lett 46(7):659–661

    Article  CAS  Google Scholar 

  129. Teissier R, Sicault D, Harmand JC, Ungaro G, Le Roux G, Largeau L (2001) Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs. J Appl Phys 89(10):5473–5477

    Article  CAS  Google Scholar 

  130. Drews D, Schneider A, Werninghaus T, Behres A, Heuken M, Heime K, Zahn DRT (1998) Characterization of MOVPE grown InPSbInAs heterostructures. Appl Surf Sci 123–124:746–750

    Article  Google Scholar 

  131. Alibert C, Bordure G, Laugier A, Chevallier J (1972) Electroreflectance and band structure of GaxIn1−xP alloys. Phys Rev B 6(4):1301–1310

    Article  CAS  Google Scholar 

  132. Uchida K, Yu PY, Noto N, Weber ER (1994) Pressure-induced Γ-X crossover in the conduction band of ordered and disordered GaInP alloys. Appl Phys Lett 64(21):2858–2860

    Article  CAS  Google Scholar 

  133. Alavi K, Aggarwal RL, Groves SH (1980) Interband magnetoabsorption of In0.53Ga0.47As. Phys Rev B 21(3):1311–1315

    Google Scholar 

  134. Lambkin JD, Dunstan DJ (1988) The hydrostatic pressure dependence of the band-edge photoluminescence of GaInAs. Solid State Commun 67(8):827–830

    Article  CAS  Google Scholar 

  135. Desplanque L, Vignaud D, Godey S, Cadio E, Plissard S, Wallart X, Liu P, Sellier H (2010) Electronic properties of the high electron mobility Al0.56In0.44Sb/Ga0.5In0.5Sb heterostructure. J Appl Phys 108(4):043704–043704-6

    Google Scholar 

  136. Bouarissa N, Atheag H (1995) Band structure calculations of InxGa1−xSb under pressure. Infrared Phys Technol 36(6):973–980

    Article  CAS  Google Scholar 

  137. Shan W, Ager JW, Yu KM, Walukiewicz W, Haller EE, Martin MC, Mckinney WR, Yang W (1999) Dependence of the fundamental band gap of AlxGa1−xN on alloy composition and pressure. J Appl Phys 85(12):8505–8507

    Article  CAS  Google Scholar 

  138. Dridi Z, Bouhafs B, Ruterana P (2002) Pressure dependence of energy band gaps for AlxGa1−xN, InxGa1−xN and InxAl1−xN. New J Phys 4(1):94.1–94.15

    Google Scholar 

  139. Chen A, Woodall JM (2009) Photodiode characteristics and band alignment parameters of epitaxial Al0.5Ga0.5P. Appl Phy Lett 94(2):021102–021102-3

    Google Scholar 

  140. Bosio C, Stachli JL, Guzzi M, Burri G, Logan RA (1988) Direct energy gap dependence on Al concentration in AlxGa1−xAs. Phys Rev B 38(5):3263–3268

    Article  CAS  Google Scholar 

  141. Wei SH, Zunger A (1999) Predicted band gap pressure coefficients of all diamond and zinc-blende semiconductors: the chemical trends. Phys Rev B 60(8):5404–5411

    Article  CAS  Google Scholar 

  142. Adachi S (1994) GaAs and related materials: bulk semiconducting and superlattice properties. World Scientific, Singapore

    Google Scholar 

  143. Tamargo MC (2002) II–VI Semiconductor materials and their applications. Taylor & Francis, New York

    Google Scholar 

  144. Yang XD, Xu ZY, Sun Z, Sun BQ, Li GH, Sou IK, Ge WK (2005) Recombination kinetics of Te isoelectronic centers in ZnSTe. Appl Phys Lett 86(5):052107–052107-3

    Article  CAS  Google Scholar 

  145. Seong MJ, Alawadhi H, Miotkowski I, Ramdas AK, Miotkowska S (1999) The anomalous variation of band gap with alloy composition: cation vs anion substitution in ZnTe. Solid State Commun 112(6):329–334

    Article  CAS  Google Scholar 

  146. Wu J, Walukiewicz W, Yu KM, Shan W, Ager, JW III, Haller, WK, Miotkowski I, Ramdas AK, Su CH (2003) Composition dependence of the hydrostatic pressure coefficients of the bandgap of ZnSe1−xTex alloys. Phys Rev B 68(3):033206–033206-4

    Google Scholar 

  147. Murali KR, Thilagavathy K, Vasantha S, Gopalakrishnan P, Oommen PR (2010) Photoelectrochemical properties of CdSxSe1−x films. Sol Energy 84(4):722–729

    Article  CAS  Google Scholar 

  148. Azhniuk YM, Lopushansky VV, Hutych YI, Prymak MV, Gomonnai AV, Zahn DRT (2011) Precipitates of selenium and tellurium in II–VI nanocrystal-doped glass probed by Raman scattering. Physica Status Solidi (b) 248(3):674–679

    Article  CAS  Google Scholar 

  149. Zerroug S, Ali Sahraoui F, Bouarissa N (2007) Structural parameters and pressure coefficients for CdSxTe1−x: FP-LAPW calculations. Eur Phys J B, 57(1):9–14

    Article  CAS  Google Scholar 

  150. Muthukumarasamy N, Balasundaraprabhu R, Jayakumar S, Kannan MD (2007) Photoconductive properties of hot wall deposited CdSe0.6Te0.4 thin films. Mater Sci Eng B 137(1–3):1–4

    Article  CAS  Google Scholar 

  151. Beliveau A, Carlone C (1989) Pressure study of the direct band gap of ZnxCd1−xS mixed crystals. Semicond Sci Technol 4(4):277–279

    Article  CAS  Google Scholar 

  152. Olego DJ, Faurie JP, Sivananthan S, Raccah PM (1985) Optoelectronic properties of Cd1−xZnxTe films grown by molecular beam epitaxy on GaAs substrates. Appl Phys Lett 47(11):1172–1174

    Article  CAS  Google Scholar 

  153. Madelung O, Von Der Osten W, Rossler U (1986) Landolt-Bornstein: numerical data and functional relationships in science and technology. Springer, Berlin, Germany

    Google Scholar 

  154. Reimann K, Haselhoff M, St. Rubenacke S, Steube M (1996) Determination of the pressure dependence of band-structure parameters by two-photon spectroscopy. Physica Status Solidi (b) 198(1):71–80

    Article  CAS  Google Scholar 

  155. Zhao Z, Zeng J, Ding Z, Wang X, Hou J (2007) High pressure photoluminescence of CdZnSe quantum dots: Alloying effect. J Appl Phys 102(5):053509–053509-3

    Article  CAS  Google Scholar 

  156. Gil B, Dunstan DJ (1991) Tellurium-based II–VI compound semiconductors and heterostructures under strain. Semicond Sci Technol 6(6):428–438

    Article  CAS  Google Scholar 

  157. Gonzalez J, Perez FV, Moya E, Chervin JC (1995) Hydrostatic pressure dependence of the energy gaps of CdTe in the zinc-blende and rocksalt phases. J Phys Chem Solids 56(3–4):335–340

    Article  CAS  Google Scholar 

  158. Fang ZL, Li GH, Liu NZ, Zhu ZM, Han HX, Ding K, Ge WK, Sou IK (2002) Photoluminescence from ZnS1−xTex alloys under hydrostatic pressure. Phys Rev B 66(8): 085203–085203-6

    Google Scholar 

  159. Prins AD, Dunstan DJ, Lambkin JD, O’Reilly EP, Adams AR, Pritchard R, Truscott WS, Singer KE (1993) Evidence of type-I band offsets in strained GaAs1−xSbx/GaAs quantum wells from high-pressure photoluminescence. Phys Rev B 47(4):2191–2196

    Article  CAS  Google Scholar 

  160. Teisseyre H, Kozankiewicz B, Leszczynski M, Grzegory I, Suski T, Bockowski M, Porowski S, Pakula K, Mensz PM, Bhat IB (1996) Pressure and time-resolved photoluminescence studies of Mg-doped and undoped GaN. Physica Status Solidi (b) 198(1):235–241

    Article  CAS  Google Scholar 

  161. Cardona M (1963) Band parameters of semiconductors with zincblende, wurtzite, and germanium structure. J Phys Chem Solids 24(12):1543–1555

    Article  CAS  Google Scholar 

  162. Shan W, Walukiewicz W, Ager JW, Yu KM, Wu J, Haller EE (2004) Pressure dependence of the fundamental band-gap energy of CdSe. Appl Phys Lett 84(1):67–69

    Article  CAS  Google Scholar 

  163. Yu PY, Cardona M (1970) Temperature coefficient of the refractive index of diamond- and zincblende-type semiconductors. Phys Rev B 2(8):3193–3197

    Article  Google Scholar 

  164. Fernandes PA, Salomé PMP, Da Cunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloy Compd 509(28):7600–7606

    Article  CAS  Google Scholar 

  165. Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw WS, Fukano T, Ito T, Motohiro T (2008) Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl Phys Express 1(4):041201–041202

    Article  CAS  Google Scholar 

  166. Moholkar AV, Shinde SS, Babar AR, Sim K, Lee HK, Rajpure KY, Patil PS, Bhosale CH, Kim JH (2011) Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells. J Alloy Compd 509(27):7439–7446

    Article  CAS  Google Scholar 

  167. Schorr S, Hoebler HJ, Tovar M (2007) A neutron diffraction study of the stannite-kesterite solid solution series. Eur J Mineral 19(1):65–73

    Article  CAS  Google Scholar 

  168. Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: Stannite Cu2ZnxSnySe1+x+2y. J Am Chem Soc 132(13):4514–4515

    Article  CAS  Google Scholar 

  169. Liu ML, Chen IW, Huang FQ, Chen LD (2009) Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater 21(37):3808–3812

    Article  CAS  Google Scholar 

  170. Sevik C, Çağın T (2010) Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds. Phys Rev B 82(4):045202–045202-6

    Google Scholar 

  171. Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22(20):E156–E159

    Article  CAS  Google Scholar 

  172. Matsushita H, Ichikawa T, Katsui A (2005) Structural, thermodynamical and optical properties of Cu2–II–IV–VI4 quaternary compounds. J Mater Sci 40(8):2003–2005

    Article  CAS  Google Scholar 

  173. Matsushita H, Maeda T, Katsui A, Takizawa T (2000) Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se). J Cryst Growth 208(1–4):416–422

    Article  CAS  Google Scholar 

  174. Parasyuk OV, Olekseyuk ID, Piskach LV (2005) X-ray powder diffraction refinement of Cu2ZnGeTe4 structure and phase diagram of the Cu2GeTe3–ZnTe system. J Alloy Compd 397(1):169–172

    Article  CAS  Google Scholar 

  175. Parasyuk OV, Piskach LV, Romanyuk YE, Olekseyuk ID, Zaremba VI, Pekhnyo VI (2005) Phase relations in the quasi-binary Cu2GeS3-ZnS and quasi-ternary Cu2S-Zn(Cd)S-GeS2 systems and crystal structure of Cu2ZnGeS4. J Alloy Compd 397(1–2):85–94

    Article  CAS  Google Scholar 

  176. Yao GQ, Shen HS, Honig ED, Kershaw R, Dwight K, Wold A (1987) Preparation and characterization of the quaternary chalcogenides Cu2B(II)C(IV)X4 [B(II)=Zn, Cd; C(IV)=Si, Ge; X=S, Se]. Solid State Ionics 24(3):249–252

    Article  CAS  Google Scholar 

  177. Schleich DM, Wold A (1977) Optical and electrical properties of quarternary chalcogenides. Mater Res Bull 12(2):111–114

    Article  CAS  Google Scholar 

  178. León M, Levcenko S, Serna R, Gurieva G, Nateprov A, Merino JM, Friedrich EJ, Fillat U, Schorr S, Arushanov E (2010) Optical constants of Cu2ZnGeS4 bulk crystals. J Appl Phys 108(9):093502–093502-5

    Article  CAS  Google Scholar 

  179. Chen S, Gong XG, Walsh A, Wei SH (2009) Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II–VI and I–III–VI2 compounds. Phys Re B 79(16):165211–1652211-10

    Google Scholar 

  180. Zhang Y, Sun X, Zhang P, Yuan X, Huang F, Zhang W (2012) Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. J Appl Phys 111(6):063709–063709-6

    Article  CAS  Google Scholar 

  181. Persson C (2010) Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J Appl Phy 107(5):053710–053710-8

    Google Scholar 

  182. Lamsal C, Chen D, Ravindra NM (2012) Optical and electronic properties of AlN, GaN and InN: An Analysis. In: Supplemental proceedings: materials processing and interfaces, vol 1. pp 701–713

    Chapter  Google Scholar 

  183. Wang X, Li J, Zhao Z, Huang S, Xie W (2012) Crystal structure and electronic structure of quaternary semiconductors Cu2ZnTiSe4 and Cu2ZnTiS4 for solar cell absorber. J Appl Phys 112(2): 023701–023701-4

    Google Scholar 

  184. Zhang X, Rao D, Lu R, Deng K, Chen D (2015) First-principles study on electronic and optical properties of Cu2ZnSiV I4 (VI=S, Se, and Te) quaternary semiconductors. AIP Adv 5:057111. https://doi.org/10.1063/1.4920936

    Article  CAS  Google Scholar 

  185. Ravindra NM, Ganapathy P, Choi J (2007) Energy gap—Refractive index relations in semiconductors—An overview. Infrared Phys Technol 50:21–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuggehalli M. Ravindra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, D., Ravindra, N.M. (2019). Other Miscellaneous Semiconductors and Related Binary, Ternary, and Quaternary Compounds. In: Pech-Canul, M., Ravindra, N. (eds) Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-030-02171-9_8

Download citation

Publish with us

Policies and ethics