Skip to main content

Solving the Maximal Clique Problem on Compressed Graphs

  • Conference paper
  • First Online:
Foundations of Intelligent Systems (ISMIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11177))

Included in the following conference series:

Abstract

The Maximal Clique Enumeration problem (MCE) is a graph problem encountered in many applications such as social network analysis and computational biology. However, this problem is difficult and requires exponential time. Consequently, appropriate solutions must be proposed in the case of massive graph databases. In this paper, we investigate and evaluate an approach that deals with this problem on a compressed version of the graphs. This approach is interesting because compression is a staple of massive data processing. We mainly show, through extensive experimentations, that besides reducing the size of the graphs, this approach enhances the efficiency of existing algorithms.

This work received a support from Département Info-Bourg, IUT Lyon 1 and from PHC TASSILI 17MDU984.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dimacs challenge. http://dimacs.rutgers.edu/Challenges/

  2. Snap. https://snap.stanford.edu/snap-2.3/

  3. Stanford large networks. http://snap.stanford.edu/data/

  4. Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003)

    Google Scholar 

  5. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In: Proceedings of the 13th International Conference on World Wide Web, pp. 595–602. ACM (2004)

    Google Scholar 

  6. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinf. 14(Suppl 7), (S13) (2013)

    Article  Google Scholar 

  7. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  Google Scholar 

  8. Conte, A., Virgilio, R.D., Maccioni, A.: Finding all maximal cliques in very large social networks. In: 19th International Conference on Extending Database Technology (EDB), 15–18 March, Bordeaux, France (2016)

    Google Scholar 

  9. Du, N., Wu, B., Pei, X., Wang, B., Xu, L.: Community detection in large-scale social networks. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, WebKDD/SNA-KDD 2007, pp. 16–25. ACM, New York (2007)

    Google Scholar 

  10. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 364–375. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20662-7_31

    Chapter  Google Scholar 

  11. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 157–168 (2012)

    Google Scholar 

  12. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Hungarica 18(1), 25–66 (1967)

    Article  MathSciNet  Google Scholar 

  13. Habib, M., de Montgolfier, F., Paul, C.: A simple linear-time modular decomposition algorithm for graphs, using order extension. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27810-8_17

    Chapter  MATH  Google Scholar 

  14. Lagraa, S., Seba, H., Khennoufa, R., M’Baya, A., Kheddouci, H.: A distance measure for large graphs based on prime graphs. Pattern Recognit. 47(9), 2993–3005 (2014)

    Article  Google Scholar 

  15. Lawler, E., Lenstra, J., Rinnooy Kan, A.: Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9(3), 558–565 (1980)

    Article  MathSciNet  Google Scholar 

  16. Lessley, B., Perciano, T., Mathai, M., Childs, H., Bethel, E.W.: Maximal clique enumeration with data-parallel primitives. In: 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), pp. 16–25, October 2017

    Google Scholar 

  17. Liu, Y., Dighe, A., Safavi, T., Koutra, D.: A graph summarization: A survey. CoRR abs/1612.04883 (2016). http://arxiv.org/abs/1612.04883

  18. Möhring, R., Radermacher, F.: Substitution decomposition and connection with combinatorial optimization. Ann. Discrete Math. 19, 257–356 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 419–432 (2008)

    Google Scholar 

  20. Segundo, P.S., Artieda, J., Strash, D.: Efficiently enumerating all maximal cliques with bit-parallelism. Comput. Oper. Res. 92, 37–46 (2018)

    Article  MathSciNet  Google Scholar 

  21. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: 35th International Colloquium on Automata, Languages and Programming, Iceland, 7–11 July 2008, pp. 634–645 (2008)

    Chapter  Google Scholar 

  22. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted graphs. In: Proceedings of the 17th International Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 965–973 (2011)

    Google Scholar 

  23. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)

    Article  MathSciNet  Google Scholar 

  24. Wang, J., Cheng, J., Fu, A.W.C.: Redundancy-aware maximal cliques. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 122–130 (2013)

    Google Scholar 

  25. Wasserman, S., Faust, K.: Social Network Analysis Methods and Applications, vol. 8, January 1993

    Google Scholar 

  26. Zhang, B., Park, B.H., Karpinets, T.V., Samatova, N.F.: From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics 24(7), 979–86 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamida Seba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernard, J., Seba, H. (2018). Solving the Maximal Clique Problem on Compressed Graphs. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G., Raś, Z. (eds) Foundations of Intelligent Systems. ISMIS 2018. Lecture Notes in Computer Science(), vol 11177. Springer, Cham. https://doi.org/10.1007/978-3-030-01851-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01851-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01850-4

  • Online ISBN: 978-3-030-01851-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics