Skip to main content

Cerebrovascular Disease and Stroke

  • Living reference work entry
  • First Online:
Geriatric Medicine

Abstract

Stroke is a major health concern afflicting primarily older adults, and is the fifth leading cause of death in the United States. There are two main categories of stroke: ischemic infarction, due to insufficient blood perfusing brain tissue, and hemorrhage, due to extravasation of blood from a damaged vessel. Ischemic stroke can be divided into three major etiologic categories: cardioembolic, large artery atherosclerosis, and small vessel occlusive disease. Embolic stroke of undetermined source (ESUS) is a subcategory of cryptogenic stroke that was introduced recently, and is included as well. Subcategories of hemorrhage include subarachnoid and intracerebral hemorrhage. The epidemiology, clinical characteristics, and diagnosis of these conditions will be discussed. The acute management of stroke has changed remarkably over the past few decades and will be discussed in detail as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  Google Scholar 

  2. Norrving B, Kissela B. The global burden of stroke and need for a continuum of care. Neurology. 2013;80(3 Suppl 2):S5–12.

    Article  Google Scholar 

  3. Forti P, et al. Independent predictors of ischemic stroke in the elderly: prospective data from a stroke unit. Neurology. 2013;80(1):29–38.

    Article  Google Scholar 

  4. Saposnik G, Black S, Stroke Outcome Research Canada Working Group. Stroke in the very elderly: hospital care, case fatality and disposition. Cerebrovasc Dis. 2009;27(6):537–43.

    Article  Google Scholar 

  5. Nader Pouration ASD, Kassell NF. Subarachnoid hemorrhage. In: Skolnick B, Alves W, editors. Handbook of neuroemergency clinical trials. Academic; 2006.

    Google Scholar 

  6. Adams HP Jr, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41.

    Article  Google Scholar 

  7. Hart RG, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13(4):429–38.

    Article  Google Scholar 

  8. Yiin GS, et al. Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: a population-based study. Circulation. 2014;130(15):1236–44.

    Article  CAS  Google Scholar 

  9. Wasmer K, Eckardt L, Breithardt G. Predisposing factors for atrial fibrillation in the elderly. J Geriatr Cardiol. 2017;14(3):179–84.

    Google Scholar 

  10. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8):983–8.

    Article  CAS  Google Scholar 

  11. Schnabel RB, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386(9989):154–62.

    Article  Google Scholar 

  12. Amarenco P, et al. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med. 1994;331(22):1474–9.

    Article  CAS  Google Scholar 

  13. Zabalgoitia M, et al. Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. Stroke Prevention in Atrial Fibrillation III Investigators. J Am Coll Cardiol. 1998;31(7):1622–6.

    Article  CAS  Google Scholar 

  14. Amarenco P, et al. Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke. 2014;45(5):1248–57.

    Article  CAS  Google Scholar 

  15. Mojadidi MK, et al. Cryptogenic stroke and patent foramen ovale: ready for prime time? J Am Coll Cardiol. 2018;72(10):1183–5.

    Article  Google Scholar 

  16. Kent DM, et al. An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke. Neurology. 2013;81(7):619–25.

    Article  Google Scholar 

  17. Mas JL, et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2017;377(11):1011–21.

    Article  CAS  Google Scholar 

  18. Saver JL, et al. Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med. 2017;377(11):1022–32.

    Article  Google Scholar 

  19. Fugate JE, et al. Infectious causes of stroke. Lancet Infect Dis. 2014;14(9):869–80.

    Article  Google Scholar 

  20. Wong KS, Caplan LR, Kim JS. Stroke Mechanisms. Front Neurol Neurosci. 2016;40:58–71.

    Article  Google Scholar 

  21. Regenhardt RW, et al. Advances in understanding the pathophysiology of lacunar stroke: a review. JAMA Neurol. 2018;75(10):1273–81.

    Article  Google Scholar 

  22. Kim JS, Caplan LR. Clinical stroke syndromes. Front Neurol Neurosci. 2016;40:72–92.

    Article  Google Scholar 

  23. Fisher CM. Lacunar strokes and infarcts: a review. Neurology. 1982;32(8):871–6.

    Article  CAS  Google Scholar 

  24. Hommel M, et al. Prospective study of lacunar infarction using magnetic resonance imaging. Stroke. 1990;21(4):546–54.

    Article  CAS  Google Scholar 

  25. Ntaios G. Embolic stroke of undetermined source: JACC review topic of the week. J Am Coll Cardiol. 2020;75(3):333–40.

    Article  CAS  Google Scholar 

  26. Diener HC, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med. 2019;380(20):1906–17.

    Article  CAS  Google Scholar 

  27. Hart RG, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med. 2018;378(23):2191–201.

    Article  CAS  Google Scholar 

  28. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7.

    Article  Google Scholar 

  29. Hacke W, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.

    Article  CAS  Google Scholar 

  30. Thomalla G, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.

    Article  Google Scholar 

  31. Ma H, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803.

    Article  Google Scholar 

  32. Powers WJ, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418.

    Article  Google Scholar 

  33. Heldner MR, et al. National Institutes of Health stroke scale score and vessel occlusion in 2152 patients with acute ischemic stroke. Stroke. 2013;44(4):1153–7.

    Article  Google Scholar 

  34. Broderick JP, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013;368(10):893–903.

    Article  CAS  Google Scholar 

  35. Kidwell CS, et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med. 2013;368(10):914–23.

    Article  CAS  Google Scholar 

  36. Ciccone A, et al. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368(10):904–13.

    Article  CAS  Google Scholar 

  37. Berkhemer OA, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.

    Article  Google Scholar 

  38. Goyal M, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.

    Article  CAS  Google Scholar 

  39. Campbell BC, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.

    Article  CAS  Google Scholar 

  40. Jovin TG, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306.

    Article  CAS  Google Scholar 

  41. Saver JL, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.

    Article  CAS  Google Scholar 

  42. Nogueira RG, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.

    Article  Google Scholar 

  43. Albers GW, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    Article  Google Scholar 

  44. Goyal M, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.

    Article  Google Scholar 

  45. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet. 1997;349(9065):1569–81.

    Google Scholar 

  46. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet. 1997;349(9066):1641–9.

    Google Scholar 

  47. Johnston SC, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379(3):215–25.

    Article  CAS  Google Scholar 

  48. Savitz SI, Fisher M. Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol. 2007;61(5):396–402.

    Article  CAS  Google Scholar 

  49. Savitz SI, et al. Reconsidering neuroprotection in the reperfusion era. Stroke. 2017;48(12):3413–9.

    Article  Google Scholar 

  50. Stroke Unit Trialists’ Collaboration. Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst Rev. 2007;4:CD000197.

    Google Scholar 

  51. How do stroke units improve patient outcomes? A collaborative systematic review of the randomized trials. Stroke Unit Trialists Collaboration. Stroke. 1997;28(11):2139–44.

    Google Scholar 

  52. Walter S, et al. Bringing the hospital to the patient: first treatment of stroke patients at the emergency site. PLoS One. 2010;5(10):e13758.

    Article  Google Scholar 

  53. Fassbender K, et al. Mobile stroke units for prehospital thrombolysis, triage, and beyond: benefits and challenges. Lancet Neurol. 2017;16(3):227–37.

    Article  Google Scholar 

  54. Caprio FZ, Sorond FA. Cerebrovascular disease: primary and secondary stroke prevention. Med Clin North Am. 2019;103(2):295–308.

    Article  Google Scholar 

  55. O’Donnell MJ, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–75.

    Article  Google Scholar 

  56. Kannel WB, et al. Epidemiologic assessment of the role of blood pressure in stroke. The Framingham study. JAMA. 1970;214(2):301–10.

    Article  CAS  Google Scholar 

  57. Collins R, MacMahon S. Blood pressure, antihypertensive drug treatment and the risks of stroke and of coronary heart disease. Br Med Bull. 1994;50(2):272–98.

    Article  CAS  Google Scholar 

  58. Five-year findings of the hypertension detection and follow-up program. III. Reduction in stroke incidence among persons with high blood pressure. Hypertension Detection and Follow-up Program Cooperative Group. JAMA. 1982;247(5):633–8.

    Google Scholar 

  59. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001;358(9287):1033–41.

    Article  Google Scholar 

  60. The SPRINT Research Group, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.

    Article  Google Scholar 

  61. SPS3 Study Group, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013;382(9891):507–15.

    Article  Google Scholar 

  62. Iso H, et al. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial. N Engl J Med. 1989;320(14):904–10.

    Article  CAS  Google Scholar 

  63. Zhang X, et al. Cholesterol, coronary heart disease, and stroke in the Asia Pacific region. Int J Epidemiol. 2003;32(4):563–72.

    Article  CAS  Google Scholar 

  64. Kurth T, et al. Lipid levels and the risk of ischemic stroke in women. Neurology. 2007;68(8):556–62.

    Article  CAS  Google Scholar 

  65. Cholesterol, diastolic blood pressure, and stroke: 13,000 strokes in 450,000 people in 45 prospective cohorts. Prospective studies collaboration. Lancet. 1995;346(8991–8992):1647–53.

    Google Scholar 

  66. Wolf PA, et al. Secular trends in stroke incidence and mortality. The Framingham Study. Stroke. 1992;23(11):1551–5.

    Article  CAS  Google Scholar 

  67. Fried LP, et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. 1991;1(3):263–76.

    Article  CAS  Google Scholar 

  68. Shahar E, et al. Plasma lipid profile and incident ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2003;34(3):623–31.

    Article  Google Scholar 

  69. Hebert PR, et al. Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials. JAMA. 1997;278(4):313–21.

    Article  CAS  Google Scholar 

  70. Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998;339(19):1349–57.

    Article  Google Scholar 

  71. Furberg CD. Natural statins and stroke risk. Circulation. 1999;99(2):185–8.

    Article  CAS  Google Scholar 

  72. Zhao XQ, et al. MR imaging of carotid plaque composition during lipid-lowering therapy a prospective assessment of effect and time course. JACC Cardiovasc Imaging. 2011;4(9):977–86.

    Article  Google Scholar 

  73. Amarenco P, et al. Statins in stroke prevention and carotid atherosclerosis: systematic review and up-to-date meta-analysis. Stroke. 2004;35(12):2902–9.

    Article  CAS  Google Scholar 

  74. Amarenco P, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006;355(6):549–59.

    Article  CAS  Google Scholar 

  75. Hackam DG, et al. Statins and intracerebral hemorrhage: collaborative systematic review and meta-analysis. Circulation. 2011;124(20):2233–42.

    Article  CAS  Google Scholar 

  76. McKinney JS, Kostis WJ. Statin therapy and the risk of intracerebral hemorrhage: a meta-analysis of 31 randomized controlled trials. Stroke. 2012;43(8):2149–56.

    Article  CAS  Google Scholar 

  77. Amarenco P, et al. A comparison of two LDL cholesterol targets after ischemic stroke. N Engl J Med. 2020;382(1):9.

    Article  CAS  Google Scholar 

  78. Cholesterol Treatment Trialists’ Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019;393(10170):407–15.

    Article  Google Scholar 

  79. Banerjee C, et al. Duration of diabetes and risk of ischemic stroke: the Northern Manhattan Study. Stroke. 2012;43(5):1212–7.

    Article  Google Scholar 

  80. Wolf PA, et al. Cigarette smoking as a risk factor for stroke. The Framingham Study. JAMA. 1988;259(7):1025–9.

    Article  CAS  Google Scholar 

  81. Manolio TA, et al. Short-term predictors of incident stroke in older adults. The Cardiovascular Health Study. Stroke. 1996;27(9):1479–86.

    Article  CAS  Google Scholar 

  82. Rodriguez BL, et al. Risk of hospitalized stroke in men enrolled in the Honolulu Heart Program and the Framingham Study: a comparison of incidence and risk factor effects. Stroke. 2002;33(1):230–6.

    Article  Google Scholar 

  83. Kurth T, et al. Smoking and risk of hemorrhagic stroke in women. Stroke. 2003;34(12):2792–5.

    Article  Google Scholar 

  84. Kurth T, et al. Smoking and the risk of hemorrhagic stroke in men. Stroke. 2003;34(5):1151–5.

    Article  Google Scholar 

  85. Sacco RL, et al. The protective effect of moderate alcohol consumption on ischemic stroke. JAMA. 1999;281(1):53–60.

    Article  CAS  Google Scholar 

  86. Elkind MS, et al. Moderate alcohol consumption reduces risk of ischemic stroke: the Northern Manhattan Study. Stroke. 2006;37(1):13–9.

    Article  Google Scholar 

  87. Piercy KL, Troiano RP. Physical Activity Guidelines for Americans from the US Department of Health and Human Services. Circ Cardiovasc Qual Outcomes. 2018;11(11):e005263.

    Article  Google Scholar 

  88. Jauch EC, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.

    Article  Google Scholar 

  89. Granger CB, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

    Article  CAS  Google Scholar 

  90. Patel MR, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.

    Article  CAS  Google Scholar 

  91. Connolly SJ, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    Article  CAS  Google Scholar 

  92. Gladstone DJ, et al. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014;370(26):2467–77.

    Article  CAS  Google Scholar 

  93. Sanna T, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86.

    Article  CAS  Google Scholar 

  94. Grotta JC. Clinical practice. Carotid stenosis. N Engl J Med. 2013;369(12):1143–50.

    Article  CAS  Google Scholar 

  95. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet. 1991;337(8752):1235–43.

    Google Scholar 

  96. North American Symptomatic Carotid Endarterectomy Trial Collaborators, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325(7):445–53.

    Article  Google Scholar 

  97. Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA. 1995;273(18):1421–8.

    Google Scholar 

  98. Gurm HS, et al. Long-term results of carotid stenting versus endarterectomy in high-risk patients. N Engl J Med. 2008;358(15):1572–9.

    Article  CAS  Google Scholar 

  99. Brott TG, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010;363(1):11–23.

    Article  CAS  Google Scholar 

  100. Rothwell PM, et al. Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet. 2004;363(9413):915–24.

    Article  CAS  Google Scholar 

  101. Robinson RG, Jorge RE. Post-stroke depression: a review. Am J Psychiatry. 2016;173(3):221–31.

    Article  Google Scholar 

  102. Paolucci S. Advances in antidepressants for treating post-stroke depression. Expert Opin Pharmacother. 2017;18(10):1011–7.

    Article  CAS  Google Scholar 

  103. Kimura M, Robinson RG, Kosier JT. Treatment of cognitive impairment after poststroke depression: a double-blind treatment trial. Stroke. 2000;31(7):1482–6.

    Article  CAS  Google Scholar 

  104. Chollet F, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30.

    Article  CAS  Google Scholar 

  105. FOCUS Trial Collaboration. Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial. Lancet. 2019;393(10168):265–74.

    Article  Google Scholar 

  106. Loh AZ, et al. The global prevalence of anxiety and depressive symptoms among caregivers of stroke survivors. J Am Med Dir Assoc. 2017;18(2):111–6.

    Article  Google Scholar 

  107. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923–94.

    Article  Google Scholar 

  108. Oyesiku NM, et al. Cocaine-induced aneurysmal rupture: an emergent negative factor in the natural history of intracranial aneurysms? Neurosurgery. 1993;32(4):518–25; discussion 525–6.

    Article  CAS  Google Scholar 

  109. Nolte KB, Brass LM, Fletterick CF. Intracranial hemorrhage associated with cocaine abuse: a prospective autopsy study. Neurology. 1996;46(5):1291–6.

    Article  CAS  Google Scholar 

  110. Etminan N, Macdonald RL. Management of aneurysmal subarachnoid hemorrhage. Handb Clin Neurol. 2017;140:195–228.

    Article  CAS  Google Scholar 

  111. Marder CP, et al. Subarachnoid hemorrhage: beyond aneurysms. AJR Am J Roentgenol. 2014;202(1):25–37.

    Article  Google Scholar 

  112. Tulla M, Tillgren T, Mattila K. Is there a role for lumbar puncture in early detection of subarachnoid hemorrhage after negative head CT? Intern Emerg Med. 2019;14(3):451–7.

    Article  Google Scholar 

  113. Mitchell P, et al. Detection of subarachnoid haemorrhage with magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2001;70(2):205–11.

    Article  CAS  Google Scholar 

  114. Forster DM, et al. The value of repeat pan-angiography in cases of unexplained subarachnoid hemorrhage. J Neurosurg. 1978;48(5):712–6.

    Article  CAS  Google Scholar 

  115. Connolly ES Jr, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.

    Article  Google Scholar 

  116. Frontera JA, et al. Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified fisher scale. Neurosurgery. 2006;59(1):21–7; discussion 21–7.

    Google Scholar 

  117. Sacco S, et al. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke. 2009;40(2):394–9.

    Article  Google Scholar 

  118. Poon MT, Bell SM, Al-Shahi Salman R. Epidemiology of intracerebral haemorrhage. Front Neurol Neurosci. 2015;37:1–12.

    Google Scholar 

  119. O’Donnell MJ, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.

    Article  Google Scholar 

  120. Delcourt C, et al. Intracerebral hemorrhage location and outcome among INTERACT2 participants. Neurology. 2017;88(15):1408–14.

    Article  Google Scholar 

  121. Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke. 2009;40(4):1533–8.

    Article  Google Scholar 

  122. Brott T, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28(1):1–5.

    Article  CAS  Google Scholar 

  123. Brouwers HB, et al. Clinical applications of the computed tomography angiography spot sign in acute intracerebral hemorrhage: a review. Stroke. 2012;43(12):3427–32.

    Article  Google Scholar 

  124. Zheng H, et al. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis. 2016;42(3–4):155–69.

    Article  Google Scholar 

  125. Andrews BT, et al. The effect of intracerebral hematoma location on the risk of brain-stem compression and on clinical outcome. J Neurosurg. 1988;69(4):518–22.

    Article  CAS  Google Scholar 

  126. Mayer SA, et al. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994;44(8):1379–84.

    Article  CAS  Google Scholar 

  127. Qureshi AI, et al. Predictors of early deterioration and mortality in black Americans with spontaneous intracerebral hemorrhage. Stroke. 1995;26(10):1764–7.

    Article  CAS  Google Scholar 

  128. Fogelholm R, et al. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry. 2005;76(11):1534–8.

    Article  CAS  Google Scholar 

  129. van Asch CJ, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.

    Article  Google Scholar 

  130. Tuhrim S, et al. Validation and comparison of models predicting survival following intracerebral hemorrhage. Crit Care Med. 1995;23(5):950–4.

    Article  CAS  Google Scholar 

  131. Sreekrishnan A, et al. Intracerebral hemorrhage location and functional outcomes of patients: a systematic literature review and meta-analysis. Neurocrit Care. 2016;25(3):384–91.

    Article  CAS  Google Scholar 

  132. Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(6):660–7.

    Article  Google Scholar 

  133. Tsai YH, et al. Functional diffusion map as an imaging predictor of functional outcome in patients with primary intracerebral haemorrhage. Br J Radiol. 2013;86(1021):20110644.

    Article  Google Scholar 

  134. Hanger HC, et al. The risk of recurrent stroke after intracerebral haemorrhage. J Neurol Neurosurg Psychiatry. 2007;78(8):836–40.

    Article  CAS  Google Scholar 

  135. Baharoglu MI, et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet. 2016;387(10038):2605–13.

    Article  Google Scholar 

  136. Li X, et al. Effect of acetylsalicylic acid usage and platelet transfusion on postoperative hemorrhage and activities of daily living in patients with acute intracerebral hemorrhage. J Neurosurg. 2013;118(1):94–103.

    Article  CAS  Google Scholar 

  137. Frontera JA, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: executive summary. A statement for healthcare professionals from the Neurocritical Care Society and the Society of Critical Care Medicine. Crit Care Med. 2016;44(12):2251–7.

    Article  Google Scholar 

  138. Poungvarin N, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med. 1987;316(20):1229–33.

    Article  CAS  Google Scholar 

  139. Sakamoto Y, et al. Systolic blood pressure after intravenous antihypertensive treatment and clinical outcomes in hyperacute intracerebral hemorrhage: the stroke acute management with urgent risk-factor assessment and improvement-intracerebral hemorrhage study. Stroke. 2013;44(7):1846–51.

    Article  CAS  Google Scholar 

  140. Arima H, et al. Optimal achieved blood pressure in acute intracerebral hemorrhage: INTERACT2. Neurology. 2015;84(5):464–71.

    Article  CAS  Google Scholar 

  141. Qureshi AI, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375(11):1033–43.

    Article  Google Scholar 

  142. Moullaali TJ, et al. Blood pressure control and clinical outcomes in acute intracerebral haemorrhage: a preplanned pooled analysis of individual participant data. Lancet Neurol. 2019;18(9):857–64.

    Article  Google Scholar 

  143. Hemphill JC 3rd, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.

    Article  Google Scholar 

  144. Tuhrim S, et al. Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit Care Med. 1999;27(3):617–21.

    Article  CAS  Google Scholar 

  145. Pfausler B, et al. Cell index--a new parameter for the early diagnosis of ventriculostomy (external ventricular drainage)-related ventriculitis in patients with intraventricular hemorrhage? Acta Neurochir. 2004;146(5):477–81.

    Article  CAS  Google Scholar 

  146. Naff N, et al. Low-dose recombinant tissue-type plasminogen activator enhances clot resolution in brain hemorrhage: the intraventricular hemorrhage thrombolysis trial. Stroke. 2011;42(11):3009–16.

    Article  CAS  Google Scholar 

  147. Hanley DF, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet. 2017;389(10069):603–11.

    Article  CAS  Google Scholar 

  148. Kuramatsu JB, et al. Association of surgical hematoma evacuation vs conservative treatment with functional outcome in patients with cerebellar intracerebral hemorrhage. JAMA. 2019;322(14):1392–403.

    Article  Google Scholar 

  149. Scaggiante J, et al. Minimally invasive surgery for intracerebral hemorrhage. Stroke. 2018;49(11):2612–20.

    Article  Google Scholar 

  150. Hanley DF, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15(12):1228–37.

    Article  CAS  Google Scholar 

  151. Vespa P, et al. ICES (intraoperative stereotactic computed tomography-guided endoscopic surgery) for brain hemorrhage: a multicenter randomized controlled trial. Stroke. 2016;47(11):2749–55.

    Article  Google Scholar 

  152. Hanley DF, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393(10175):1021–32.

    Article  Google Scholar 

  153. Faught E, et al. Seizures after primary intracerebral hemorrhage. Neurology. 1989;39(8):1089–93.

    Article  CAS  Google Scholar 

  154. Greenberg SM, Vonsattel JP. Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke. 1997;28(7):1418–22.

    Article  CAS  Google Scholar 

  155. Greenberg SM, et al. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke. 2004;35(6):1415–20.

    Article  Google Scholar 

  156. Ellis RJ, et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV. Neurology. 1996;46(6):1592–6.

    Article  CAS  Google Scholar 

  157. Arima H, et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke. 2010;41(2):394–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison I. Thaler .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thaler, A.I., Fara, M.G. (2023). Cerebrovascular Disease and Stroke. In: Wasserman, M., Bakerjian, D., Linnebur, S., Brangman, S., Mims, A., Johnson, J.C. (eds) Geriatric Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-01782-8_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01782-8_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01782-8

  • Online ISBN: 978-3-030-01782-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics