Skip to main content

A Multiple Perspective Approach to History of Mathematics: Mathematical Programming and Rashevsky’s Early Development of Mathematical Biology in the Twentieth Century

  • Chapter
  • First Online:
Interfaces between Mathematical Practices and Mathematical Education

Abstract

A multiple perspective approach to history of mathematics is introduced. It is discussed how such an approach can be used to explore and shed light on relationships between developments in mathematics and the conditions of those developments. The approach will be illustrated by two episodes from the history of applied mathematics from the twentieth century: the development of mathematical programming and the significance of World War II, and Nicolas Rashevsky’s early attempts to develop mathematical biology in the 1930s in the USA and issues of engagement with interdisciplinary research. The importance that the historical actors attached to education and teaching for the development of these new fields is discussed, drawing attention to education and teaching as relevant and significant perspectives for understanding historical developments in mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I have borrowed and translated the term “a multiple perspective approach” from the historian Bernard Eric Jensen’s term “en flerperspektivist tilgang” from his book “historie—livsverden og fag” (History—lifeworld and discipline), Jensen (2003). I have also discussed this in Kjeldsen (2009, 2012).

  2. 2.

    The conference took place in Salvador, Brazil in October 2017, http://www.philmathpractice.org/2016/06/11/fourth-meeting-of-the-apmp-october-23-27-2017-salvador-da-bahia-brazil/

  3. 3.

    https://mathscinet.ams.org/msc/pdfs/classifications2010.pdf

  4. 4.

    Mathematical programming is dealing with finite dimensional optimization under inequality constraints.

  5. 5.

    The Russian mathematician and economist Leonid V. Kantorovich published the paper Mathematical Methods of Organizing and Planning Production containing similar ideas in 1939. For an English translation, see Kantorovich (1960). See also Leifman (1990).

  6. 6.

    von Neumann (1928, p. 295).

  7. 7.

    von Neumann (1928, p. 295, note 2).

  8. 8.

    For an analysis of von Neumann’s work and encounter with the minimax theorem in different contexts, see Kjeldsen (2001).

  9. 9.

    Heims (1980, p. 91).

  10. 10.

    von Neumann (1937). An English translation was published in 1945 under the title “Model of General economic equilibrium.”

  11. 11.

    See Kuhn and Tucker (1958, p. 116) and Rellstab (1992, p. 87). For an analysis of Ville’s proof, see Kjeldsen (2001).

  12. 12.

    von Neumann and Fréchet (1953, pp. 124–125).

  13. 13.

    See Kjeldsen (2000).

  14. 14.

    See Kjeldsen and Blomhøj (2013) and Kjeldsen (2017) where Rashevsky’s early work on cell division is discussed in relation to its value for teaching students to reflect upon mathematical modeling and the modeling process.

  15. 15.

    For Rashevsky’s career at the University of Chicago and his relationship with the Rockefeller Foundation, see Abraham (2004). For a scientific biography of Rashevsky, see Shmailov (2016).

  16. 16.

    The Rockefeller Foundation, President’s Review and Annual Report, 1958.

  17. 17.

    In her book Making Sense of Life, Evelyne Fox Keller (2002, p. 96) evaluated this to be one of the major problems, “a clash in scientific culture” between Rashevsky and the biologists.

  18. 18.

    See also Rau (1999).

References

  • Abraham, Tara. 2004. Nicholas Rashevsky’s mathematical biophysics. Journal of the History of Biology 37: 333–385.

    Article  Google Scholar 

  • Belhoste, Bruno. 1998. Pour une réévaluation du rôle de l’enseignement dans l’histoire des mathématiques. Revue d’Histoire Des Mathématiques 4: 289–304.

    Google Scholar 

  • CCTB. 1962. The Cullowhee Conference on Training in Biomathematics. Raleigh: North Carolina State University.

    Google Scholar 

  • Dantzig, George B. 1963. Linear Programming and Extensions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • ———. 1982. Reminiscences about the origins of linear programming. Operations Research Letters 1: 43–48.

    Article  Google Scholar 

  • ———. 1991. Linear programming. In History of Mathematical Programming, A Collection of Personal Reminiscences, ed. Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and Alexander Schrijver, 19–31. Amsterdam: North-Holland.

    Google Scholar 

  • Dantzig, George B., and Marshall K. Wood. 1949. Programming of interdependent activities, I general discussion. Econometrica 17: 193–199.

    Article  Google Scholar 

  • Epple, Moritz. 2000. Genies, Ideen, Institutionen, mathematische Werkstätten: Formen der Mathematikgeschichte. Mathematische Semesterberichte 47: 131–163.

    Article  Google Scholar 

  • Farkas, Julius. 1895. Über die Anwendung des mechanischen Princips von Fourier. Mathematische und Naturwissensschaftliche Berichte aus Ungarn 12: 263–281.

    Google Scholar 

  • ———. 1897. Die algebraischen Grundlagen der Anwendung des Fourier’sschen Principle in der mechanik. Mathematische und Naturwissensschaftliche Berichte aus Ungarn 15: 25–40.

    Google Scholar 

  • ———. 1899. Die algebraischen Grundlagen der Anwendung des mechanischen Princips von Fourier. Mathematische und Naturwissensschaftliche Berichte aus Ungarn 16: 154–157.

    Google Scholar 

  • ———. 1901. Theorie der einfachen Ungleichungen. Journal für Die Reine and Angewandte Mathematik 124: 1–27.

    Google Scholar 

  • Fortun, Michael, and Sam S. Schweber. 1993. Scientists and the legacy of world war II: The case of operations research (OR). Social Studies of Science 23: 595–642.

    Article  Google Scholar 

  • Fréchet, Maurice. 1953. Commentary on the three notes of Emile Borel. Econometrica 21: 118–124.

    Article  Google Scholar 

  • Harris, Reginald G. 1934. Introduction to volume II. In Cold Spring Harbor Symposia on Quantitative Biology, ed. Harris G. Reginald, vol. 2, xi–xii. Long Island, NY: Cold Spring Harbor.

    Google Scholar 

  • ———. 1935. Mathematics in biology. The Scientific Monthly 40 (6): 504–510.

    Google Scholar 

  • Heims, S.J. 1980. John von Neumann and Norbert Wiener. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Jensen, Bernard E. 2003. Historie—Livsverden og Fag. Copenhagen: Gyldendal.

    Google Scholar 

  • Kantorovich, L.V. 1960. Mathematical methods of organizing and planning production. Management Science 6: 366–422.

    Article  Google Scholar 

  • Keller, Evelyne Fox. 2002. Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Kjeldsen, Tinne H. 2000. A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinear programming: The impact of world war II. Historia Mathematica 27: 331–361.

    Article  Google Scholar 

  • ———. 2001. John von Neumann’s conception of the minimax theorem: A journey through different mathematical contexts. Archive for History of Exact Sciences 56: 39–68.

    Article  Google Scholar 

  • ———. 2009. Abstraction and application: New contexts, interpretations in twentieth-century mathematics. In The Oxford Handbook of the History of Mathematics, ed. Elenor Robson and Jackie Stedall, 755–778. New York: Oxford University Press.

    Google Scholar 

  • ———. 2012. Uses of history for the learning of and about mathematics: Towards a theoretical framework for integrating history of mathematics in mathematics education. In Proceedings of the International Conference on History and Pedagogy of Mathematics (HPM): 1-21. The HPM Satellite Meeting of ICME-12, July, 16–20. Daejeon: Korean Society of Mathematical Education & Korean Society for History of Mathematics.

    Google Scholar 

  • ———. 2017. An early debate in mathematical biology and its value for teaching: Rashevsky’s 1934 paper on cell division. The Mathematical Intelligencer 39 (2): 36–45.

    Article  Google Scholar 

  • Kjeldsen, Tinne H., and Morten Blomhøj. 2013. Developing students’ reflections about the function and status of mathematical Modeling in different scientific practices: History as a provider of cases. Science & Education 22 (9): 2157–2171.

    Article  Google Scholar 

  • Kuhn, Harold W. 1976. Nonlinear programming: A historical view. SIAM-AMS Proceedings 9: 1–26.

    Google Scholar 

  • Kuhn, Harold W., and Albert W. Tucker. 1950. Nonlinear programming. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 481–492.

    Google Scholar 

  • ———. 1958. John von Neumann’s work in the theory of games and mathematical economics. Bulletin of the American Mathematical Society 64: 100–122.

    Article  Google Scholar 

  • Leifman, L.J. 1990. In Functional Analysis, Otimization, and Mathematical Economics: A Collection of Papers Dedicated to the Memory of Leonid Vital’evich Kantorovic, ed. L.J. Leifman. Oxford: Oxford University Press.

    Google Scholar 

  • Mørch, Søren. 2010. Store Forandringer. Copenhagen: Politikens Forlag.

    Google Scholar 

  • Morse, Philip M. 1948. Mathematical problems in operations research. Bulletin of the American Mathematical Society 54: 602–621.

    Article  Google Scholar 

  • ———. 1955. Where is the new blood? Journal of the Operations Research Society of America 3: 383–387.

    Article  Google Scholar 

  • Owens, L. 1989. Mathematicians at war: Warren weaver and the applied mathematics panel, 1942-1945. In The History of Modern Mathematics, II: Institutions and Applications, ed. David Rowe and John McCleary, 287–305. San Diego: Academic Press, Inc.

    Google Scholar 

  • Rasehevsky, Nicolas. 1932. Contributions to the theoretical physics of the cell. Protoplasma 16: 387–395.

    Article  Google Scholar 

  • Rashevsky, Nicolas. 1928. Zur Theorie der spontanen Teilung von mikroskopischen Tropfen. Zeitschrift für Physik 46: 568–593.

    Article  Google Scholar 

  • ———. 1931. Some theoretical aspects of the biological applications of physics of disperse systems. Physics 1: 143–153.

    Article  Google Scholar 

  • ———. 1934. Physico-mathematical aspects of cellular multiplication and development. Cold Spring Harbor Symposia on Quantitative Biology 2: 188–198.

    Article  Google Scholar 

  • ———. 1935. Mathematical Biophysics. Nature 135: 528–530.

    Article  Google Scholar 

  • Rau, Erik Peter. 1999. Combat scientists: The emergence of operations research in the United States during World War II. Dissertations available from ProQuest. AAI9926187. https://repository.upenn.edu/dissertations/AAI9926187

  • Rees, Mina S. 1977. Mathematics and the government: The post-war years as augury of the future. In The Bicentennial Tribute to American Mathematics, 1776-1976, ed. D. Tarwater, 101–116. Buffalo, NY: The Mathematical Association of America.

    Google Scholar 

  • ———. 1987. Warren Weaver, July 17, 1894-November 24, 1978. Biographical Memoirs, National Academy of Sciences of the United States of America 57: 492–530.

    Google Scholar 

  • Rellstab, U. 1992. New insights into the collaboration between John von Neumann and Oskar Morgenstern on the Theory of Games and Economic Behavior. In Towards a History of Game Theory, ed. E. Roy Weintraub, 77–94. Durham and London: Duke University Press.

    Google Scholar 

  • Richards, Joan L. 1995. The history of mathematics and ‘L’esprit humain’: A critical reappraissal. Osiris 10: 122–135.

    Article  Google Scholar 

  • Schubring, Gert. 2001. Production Mathématique, Enseignement et Communication. Remarques sur la note de Bruno Belhoste, “Pour une réévaluation du rôle de l’enseignement dans l’histoire des mathématiques” parue dans la RHM 4 (1998), p. 289–304. Revue d’Histoire Des Mathématiques 7: 295–305.

    Google Scholar 

  • Shmailov, Maya M. 2016. Intellectual Pursuits of Nicolas Rashevsky. The Queer Duck of Biology. Basel: Birkhäuser, Springer International.

    Book  Google Scholar 

  • Thomas, William. 2012. Operations research vis-à-vis management at Arthur D. Little and the Massachusetts Institute of Technology in the 1950s. Business History Review 86: 99–122.

    Article  Google Scholar 

  • von Neumann, John. 1928. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100: 295–320.

    Article  Google Scholar 

  • ———. 1937. Über eine ökonomische Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. In Ergebnisse eines Mathematischen Kolloquiums Wien, ed. Karl Menger, 73–83.

    Google Scholar 

  • von Neumann, John, and Oskar Morgenstern. 1944. Theory of Games and Economic Behavior. Princeton: Princeton University Press.

    Google Scholar 

  • von Neumann, J., and Fréchet, M. 1953. Communication on the Borel Notes. Econometrica 21: 124–127.

    Article  Google Scholar 

  • Wilson, E.B. 1934. Mathematics of growth. In Cold Spring Harbor Symposia on Quantitative Biology, vol. 2, 199–202. Long Island, NY: Cold Spring Harbor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinne Hoff Kjeldsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kjeldsen, T.H. (2019). A Multiple Perspective Approach to History of Mathematics: Mathematical Programming and Rashevsky’s Early Development of Mathematical Biology in the Twentieth Century. In: Schubring, G. (eds) Interfaces between Mathematical Practices and Mathematical Education. International Studies in the History of Mathematics and its Teaching. Springer, Cham. https://doi.org/10.1007/978-3-030-01617-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01617-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01616-6

  • Online ISBN: 978-3-030-01617-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics