Skip to main content

Sparse Coding Predicts Optic Flow Specifities of Zebrafish Pretectal Neurons

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Abstract

Zebrafish pretectal neurons exhibit specificities for large-field optic flow patterns associated with rotatory or translatory body motion. We investigate the hypothesis that these specificities reflect the input statistics of natural optic flow. Realistic motion sequences were generated using computer graphics simulating self-motion in an underwater scene. Local retinal motion was estimated with a motion detector and encoded in four populations of directionally tuned retinal ganglion cells, represented as two signed input variables. This activity was then used as input into one of two learning networks: a sparse coding network (competitive learning) and backpropagation network (supervised learning). Both simulations develop specificities for optic flow which are comparable to those found in a neurophysiological study [8], and relative frequencies of the various neuronal responses are best modeled by the sparse coding approach. We conclude that the optic flow neurons in the zebrafish pretectum do reflect the optic flow statistics. The predicted vectorial receptive fields show typical optic flow fields but also “Gabor” and dipole-shaped patterns that likely reflect difference fields needed for reconstruction by linear superposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.blender.org.

  2. 2.

    https://petavision.github.io and [18].

  3. 3.

    https://tensorflow.org.

References

  1. Antinucci, P.: Neural mechanisms generating orientation selectivity in the retina. Curr. Biol. 26(14), 1802–1815 (2016). https://doi.org/10.1016/j.cub.2016.05.035

    Article  Google Scholar 

  2. Bak-Coleman, J., Smith, D., Coombs, S.: Going with, then against the flow: evidence against the optomotor hypothesis of fish rheotaxis. Anim. Behav. 107, 7–17 (2015). https://doi.org/10.1016/j.anbehav.2015.06.007

    Article  Google Scholar 

  3. Barlow, H.B.: Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1(4), 371–394 (1972). https://doi.org/10.1068/p010371

    Article  Google Scholar 

  4. Franz, M.O., Chahl, J.S., Krapp, H.G.: Insect-inspired estimation of egomotion. Neural Comput. 16(11), 2245–2260 (2004). https://doi.org/10.1162/0899766041941899

    Article  MATH  Google Scholar 

  5. Honegger, K.S., Campbell, R.A.A., Turner, G.C.: Cellular-resolution population imaging reveals robust sparse coding in the drosophila mushroom body. J. Neurosci. 31(33), 11772–11785 (2011). https://doi.org/10.1523/JNEUROSCI.1099-11.2011

    Article  Google Scholar 

  6. Hyvärinen, A., Hurri, J., Hoyer, P.O.: Natural Image Statistics. Springer, London (2009). https://doi.org/10.1007/978-1-84882-491-1

    Book  MATH  Google Scholar 

  7. Ilg, E. et al.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017). https://doi.org/10.1109/cvpr.2017.179

  8. Kubo, F.: Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81(6), 1344–1359 (2014). https://doi.org/10.1016/j.neuron.2014.02.043

    Article  Google Scholar 

  9. Nikolaou, N.: Parametric functional maps of visual inputs to the tectum. Neuron 76(2), 317–324 (2012). https://doi.org/10.1016/j.neuron.2012.08.040

    Article  Google Scholar 

  10. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996). https://doi.org/10.1038/381607a0

    Article  Google Scholar 

  11. Olshausen, B.A., Field, D.J.: How close are we to understanding V1? Neural Comput. 17(8), 1665–1699 (2005). https://doi.org/10.1162/0899766054026639

    Article  MATH  Google Scholar 

  12. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37(23), 3311–3325 (1997). https://doi.org/10.1016/s0042-6989(97)00169-7

    Article  Google Scholar 

  13. Orban, G.A.: Higher order visual processing in macaque extrastriate cortex. Physiol. Rev. 88(1), 59–89 (2008). https://doi.org/10.1152/physrev.00008.2007

    Article  Google Scholar 

  14. Papadopoulou, M.: Normalization for sparse encoding of odors by a wide-field interneuron. Science 332(6030), 721–725 (2011). https://doi.org/10.1126/science.1201835

    Article  Google Scholar 

  15. Perrone, J.A.: Model for the computation of self-motion in biological systems. J. Opt. Soc. Am. A 9(2), 177 (1992). https://doi.org/10.1364/josaa.9.000177

    Article  Google Scholar 

  16. Raudies, F., Neumann, H.: A review and evaluation of methods estimating ego-motion. Comput. Vis. Image Underst. 116(5), 606–633 (2012). https://doi.org/10.1016/j.cviu.2011.04.004

    Article  Google Scholar 

  17. Rozell, C.J.: Sparse coding via thresholding and local competition in neural circuits. Neural Comput. 20(10), 2526–2563 (2008). https://doi.org/10.1162/neco.2008.03-07-486

    Article  MathSciNet  Google Scholar 

  18. Schultz, P.F., et al.: Replicating kernels with a short stride allows sparse reconstructions with fewer independent kernels. In: arXiv preprint arXiv:1406.4205 (2014). http://arxiv.org/abs/1406.4205

  19. Spence, R.: The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. 83(1), 13–34 (2007). https://doi.org/10.1111/j.1469-185X.2007.00030.x

    Article  Google Scholar 

  20. Timofte, R., Van Gool, L.: Sparse flow: sparse matching for small to large displacement optical flow. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 1100–1106. IEEE (2015). https://doi.org/10.1109/wacv.2015.151

  21. Vijayanarasimhan, S., et al.: SfM-Net: learning of structure and motion from video. In: arXiv preprint arXiv:1704.07804 (2017). https://arxiv.org/abs/1704.07804

  22. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical ow estimation using a learned basis and layers. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 120–130. IEEE (2015). https://doi.org/10.1109/cvpr.2015.7298607

  23. Zhou, T., et al.: Unsupervised learning of depth and ego-motion from video. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017). https://doi.org/10.1109/cvpr.2017.700

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit A. Ecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ecke, G.A., Mikulasch, F.A., Bruijns, S.A., Witschel, T., Arrenberg, A.B., Mallot, H.A. (2018). Sparse Coding Predicts Optic Flow Specifities of Zebrafish Pretectal Neurons. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics