Skip to main content

Emergence of Sensory Representations Using Prediction in Partially Observable Environments

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

Abstract

In order to explore and act autonomously in an environment, an agent can learn from the sensorimotor information that is captured while acting. By extracting the regularities in this sensorimotor stream, it can build a model of the world, which in turn can be used as a basis for action and exploration. It requires the acquisition of compact representations from possibly high dimensional raw observations. In this paper, we propose a model which integrates sensorimotor information over time, and project it in a sensory representation. It is trained by preforming sensorimotor prediction. We emphasize on a simple example the role of motor and memory for learning sensory representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, P., Nair, A.V., Abbeel, P., Malik, J., Levine, S.: Learning to poke by poking: experiential learning of intuitive physics. In: Advances in Neural Information Processing Systems, pp. 5074–5082 (2016)

    Google Scholar 

  2. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  3. Ghahramani, Z., Wolpert, D.M., Jordan, M.I.: An internal model for sensorimotor integration. Science 269, 1880–1882 (1995). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.74

    Article  Google Scholar 

  4. Ha, D., Schmidhuber, J.: World models (2018). https://worldmodels.github.io

  5. Harnad, S.: The symbol grounding problem (1990). http://cogprints.org/3106/

  6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  7. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Lesort, T., Díaz-Rodríguez, N., Goudou, J.F., Filliat, D.: State representation learning for control: an overview. ArXiv e-prints, February 2018

    Google Scholar 

  10. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  11. Moser, M.B., Rowland, D.C., Moser, E.I.: Place cells, grid cells, and memory. Cold Spring Harb. Perspect. Biol. 7(2), a021808 (2015)

    Article  Google Scholar 

  12. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24(5), 939–973 (2001)

    Article  Google Scholar 

  13. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  14. Riedo, F., Rétornaz, P., Bergeron, L., Nyffeler, N., Mondada, F.: A two years informal learning experience using the Thymio robot. Adv. Auton. Mini Robot. 101, 37–48 (2012)

    Article  Google Scholar 

  15. Stachenfeld, K.L., Botvinick, M.M., Gershman, S.J.: The hippocampus as a predictive map. Nat. Neurosci. 20(11), 1643–1653 (2017). https://doi.org/10.1038/nn.4650

    Article  Google Scholar 

  16. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  17. Wayne, G., et al.: Unsupervised predictive memory in a goal-directed agent. CoRR abs/1803.10760 (2018). http://arxiv.org/abs/1803.10760

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Garcia Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulak, T., Ortiz, M.G. (2018). Emergence of Sensory Representations Using Prediction in Partially Observable Environments. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics