Skip to main content

Ocular Surface Epithelium: Applied Anatomy

  • Chapter
  • First Online:
Corneal Regeneration

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Anatomically, the ocular surface (OS) covers the area from the lid margins across the palpebral, fornicial and bulbar conjunctiva, the limbal and corneal epithelium. Functionally, the tear film, the glands that produce it, the lacrimal drainage apparatus and the lid blink reflexes all constitute the ocular surface. The OS is an integral part of the mucosal immune system.

The conjunctival epithelium is multilayered near the lid margins but about 2–3 cells thick elsewhere. Goblet cells differentially populate the conjunctival epithelium and produce mucin, which forms the innermost layer of the tear film, providing the hydrophobic epithelium with a hydrophilic cover. Intraepithelial lymphocytes, substantia propria resident white cells and basement membrane fenestrations contribute to its immune function.

The corneal epithelium is a very highly organized structure made of five layers of cells from the superficial flat cells, the middle wing cells and the basal columnar cells that rest on a very regular non-fenestrated basement membrane that provides anchorage to the epithelium with the underlying Bowman’s layer through hemidesmosomes and anchoring filaments. This attachment is stronger at the periphery. The basal cells are capable of rapid mitosis in response to injury and represent ‘transient amplifying cells’. The wing cells are postmitotic.

The limbal epithelium is of variable thickness corresponding to the palisades of Vogt and the inter-palisade rete ridges. The palisades are repositories of stem cells that are particularly abundant in the limbal epithelial crypts, which represent the stem cell niche and extend from the peripheral end of some inter-palisade rete ridges. Corneal epithelial maintenance and replenishment is provided by the stem cells and the basal cells. In the normal physiological state, the basal cells can sustain the central epithelial cell mass but depend on the stem cells for their renewal. In response to injury and insult, the contribution of stem cells is crucial for epithelial wound healing.

The corneal epithelium is endowed with a rich network of sensory nerves from the ophthalmic division of the trigeminal nerve. They serve both trophic and sensory functions, making the cornea the most sensitive structure in the human body. Several pathological conditions such as neurotrophic keratopathy, limbal stem cell deficiency and recurrent corneal erosion syndrome are associated with loss of anatomical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warwick R. Eugene Wolff’s anatomy of the eye and orbit. 7th ed. Philadelphia: Saunders; 1976. p. 3.

    Google Scholar 

  2. Rufer F, Schroder A, Erb C. White-to-white corneal diameter; normal values in healthy humans obtained with the Orbscan II topography system. Cornea. 2005;24:259–61.

    Article  Google Scholar 

  3. Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120:1778–85.

    Article  Google Scholar 

  4. Gipson IK. Anatomy of the conjunctiva, cornea and limbus. In: Smolin G, Thoft RA, editors. The cornea, scientific foundations and clinical practice. New York: Little Brown and Company; 1994.

    Google Scholar 

  5. Farjo A, McDermott M, Soong HK. Corneal anatomy, physiology, and wound healing. In: Yanoff M, Duker JS, editors. Ophthalmology. 3rd ed. St. Louis: Mosby; 2008. p. 203–8.

    Google Scholar 

  6. Nishida T. Cornea. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Fundamentals of cornea and external disease. St Louis: Mosby; 1997.

    Google Scholar 

  7. Dua HS, Forrester JV. Clinical patterns of corneal epithelial wound healing. Am J Ophthalmol. 1987;104:481–9.

    Article  CAS  Google Scholar 

  8. Dua HS. The conjunctiva in corneal epithelial wound healing. Br J Ophthalmol. 1998;82:1407–11.

    Article  CAS  Google Scholar 

  9. Scott RA, Lauweryns B, Snead DM, Haynes RJ, Mahida Y, Dua HS. E-cadherin distribution and epithelial basement membrane characteristics of the normal human conjunctiva and cornea. Eye. 1997;11:607–12.

    Article  Google Scholar 

  10. Gipson IK, Grill SM, Spurr SJ, Brennan SJ. Hemidesmosome formation in vitro. J Cell Biol. 1983;97:849–57.

    Article  CAS  Google Scholar 

  11. Chaloin-Dufau C, Pavitt I, Delorme P, Dhouailly D. Identification of keratins 3 and 12 in corneal epithelium of vertebrates. Epithelial Cell Biol. 1993;2:120–5.

    CAS  PubMed  Google Scholar 

  12. Schermer A, Galvin S, Sun TT. Differentiation related expression of a major 64k corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;102:49–62.

    Article  Google Scholar 

  13. Taylor HR, Kimsey RA. Corneal epithelial basement membrane changes in diabetes. Invest Ophthalmol Vis Sci. 1981;20:548–53.

    CAS  PubMed  Google Scholar 

  14. Torricelli AAM, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci. 2013;54:6390–400.

    Article  CAS  Google Scholar 

  15. Dua HS, Lagnado R, Raj D, Singh R, Mantry S, Gray T, Lowe J. Alcohol delamination of the corneal epithelium: an alternative in the management of recurrent corneal erosions. Ophthalmology. 2006;113:404–11.

    Article  Google Scholar 

  16. Browning AC, Shah S, Dua HS, Maharajan SV, Gray T, Bragheeth MA. Alcohol debridement of the corneal epithelium in PRK and LASEK: an electron microscopic study. Invest Ophthalmol Vis Sci. 2003;44:510–3.

    Article  Google Scholar 

  17. Hanna C, O’Brien JE. Cell production and migration in the epithelial layer of the cornea. Arch Ophthalmol. 1960;64:536–9.

    Article  CAS  Google Scholar 

  18. Hanna C, Bicknell DS, O’Brien JE. Cell turnover in the adult human eye. Arch Ophthalmol. 1961;65:695–8.

    Article  CAS  Google Scholar 

  19. Dua HS, Miri A, Alomar T, Yeung AM, Said DG. The role of limbal stem cells in corneal epithelial maintenance: testing the dogma. Ophthalmology. 2009;116:856–63.

    Article  Google Scholar 

  20. Dua HS. Stem cells of the ocular surface: scientific principles and clinical applications. Br J Ophthalmol. 1995;79:968.

    Article  CAS  Google Scholar 

  21. Alison MR, Poulsom R, Forbes S, Wright NA. An introduction to stem cells. J Pathol. 2002;197:419–23.

    Article  Google Scholar 

  22. Fuchs E, Segre JA. Stem cells: a new lease on life. Cell. 2000;100:143–55.

    Article  CAS  Google Scholar 

  23. Janes SM, Lowell S, Hutter C. Epidermal stem cells. J Pathol. 2002;197:479–91.

    Article  Google Scholar 

  24. Sehic A, Utheim ØA, Ommundsen K, Utheim TP. Pre-clinical cell-based therapy for limbal stem cell deficiency. J Funct Biomater. 2015;6:863–88.

    Article  CAS  Google Scholar 

  25. Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44:415–25.

    Article  CAS  Google Scholar 

  26. Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol. 2005;89:529–32.

    Article  CAS  Google Scholar 

  27. Goldberg MF, Bron A. Limbal palisades of Vogt. Trans Am Ophthalmol Soc. 1982;80:155–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Buskirk EM. Anatomy of the limbus. Eye. 1989;3:101–8.

    Article  Google Scholar 

  29. Zieske JD, Wasson M. Regional variation in distribution of EGF receptor in developing and adult corneal epithelium. J Cell Sci. 1993;106:145–52.

    CAS  PubMed  Google Scholar 

  30. Chung EH, DeGregorio PG, Wasson M, et al. Epithelial regeneration after limbus-to-limbus debridement. Expression of alpha-enolase in stem and transient amplifying cells. Invest Ophthalmol Vis Sci. 1995;36:1336–43.

    CAS  PubMed  Google Scholar 

  31. Zieske JD. Perpetuation of stem cells in the eye. Eye. 1994;8:163–9.

    Article  Google Scholar 

  32. Matic M, Petrov IN, Chen S, Wang C, Dimitrijevich SD, Wolosin JM. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation. 1997;61:251–60.

    Article  CAS  Google Scholar 

  33. Chen Z, De Pavia CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells. 2004;22:355–66.

    Article  Google Scholar 

  34. Watanabe H, Okano T, Tano Y. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett. 2004;565:6–10.

    Article  CAS  Google Scholar 

  35. Kawasaki S, Tanioka H, Yamasaki K, Connon CJ, Kinoshita S. Expression and tissue distribution of p63 isoforms in human ocular surface epithelia. Exp Eye Res. 2006;82:293–9.

    Article  CAS  Google Scholar 

  36. Sartaj R, Zhang C, Wan P, Pasha Z, Guaiquil V, Liu A, Liu J, Luo Y, Fuchs E, Rosenblatt MI. Characterization of slow cycling corneal limbal epithelial cells identifies putative stem cell markers. Sci Rep. 2017;7:3793.

    Article  CAS  Google Scholar 

  37. Ghoubay-Benallaoua D, de Sousa C, Martos R, Latour G, Schanne-Klein MC, Dupin E, Borderie V. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea. PLoS One. 2017;12:e0188398.

    Article  Google Scholar 

  38. Shanmuganathan VA, Foster T, Kulkarni BB, Hopkinson A, Gray T, Powe DG, Lowe J, Dua HS. Morphological characteristics of the limbal epithelial crypt. Br J Ophthalmol. 2007;91:514–9.

    Article  Google Scholar 

  39. Miri A, Al-Aqaba M, Otri AM, Fares U, Said DG, Faraj LA, Dua HS. In vivo confocal microscopic features of normal limbus. Br J Ophthalmol. 2012;96:530–6.

    Article  Google Scholar 

  40. Miri A, Alomar T, Nubile M, Al-Aqaba M, Lanzini M, Fares U, Said DG, Lowe J, Dua HS. In vivo confocal microscopic findings in patients with limbal stem cell deficiency. Br J Ophthalmol. 2012;96:523–9.

    Article  Google Scholar 

  41. Haagdorens M, Behaegel J, Rozema J, Van Gerwen V, Michiels S, Ní Dhubhghaill S, Tassignon MJ, Zakaria N. A method for quantifying limbal stem cell niches using OCT imaging. Br J Ophthalmol. 2017;101:1250–5.

    Article  Google Scholar 

  42. Grieve K, Ghoubay D, Georgeon C, Thouvenin O, Bouheraoua N, Paques M, Borderie VM. Three-dimensional structure of the mammalian limbal stem cell niche. Exp Eye Res. 2015;140:75–8.

    Article  CAS  Google Scholar 

  43. Yeung AM, Schlötzer-Schrehardt U, Kulkarni B, Tint NL, Hopkinson A, Dua HS. Limbal epithelial crypt: a model for corneal epithelial maintenance and novel limbal regional variations. Arch Ophthalmol. 2008;126:665–9.

    Article  Google Scholar 

  44. Kulkarni BB, Tighe PJ, Mohammed I, Yeung AM, Powe DG, Hopkinson A, Shanmuganathan VA, Dua HS. Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics. BMC Genomics. 2010;29:526.

    Article  Google Scholar 

  45. Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4:285–94.

    Article  CAS  Google Scholar 

  46. Omori Y, Yamasaki H. Mutated connexin43 proteins inhibit rat glioma cell growth suppression mediated by wild-type connexin43 in a dominant-negative manner. Int J Cancer. 1998;9:446–53.

    Article  Google Scholar 

  47. Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL. Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). Cancer Res. 1998;58:5089–96.

    CAS  PubMed  Google Scholar 

  48. Thoft RA, Friend J. XYZ thoft hypothesis the X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–3.

    CAS  PubMed  Google Scholar 

  49. Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008;456:250–4.

    Article  CAS  Google Scholar 

  50. Dua HS, Forrester JV. The corneoscleral limbus in human corneal epithelial wound healing. Am J Ophthalmol. 1990;110:646–56.

    Article  CAS  Google Scholar 

  51. Dua HS, Joseph A, Shanmuganathan VA, Jones RE. Stem cell differentiation and the effects of deficiency. Eye. 2003;17:877–85.

    Article  CAS  Google Scholar 

  52. Dua HS. Transplantation of limbal stem cells. Essentials in ophthalmology. Series Editors Krieglstein GK and Weinreb RN. Cornea and external eye disease. Section editor Thomas Rienhard. Berlin/Heidelberg: Springer; 2005. p. 34–56.

    Google Scholar 

  53. Dua HS, Said DG. The ocular surface functional anatomy, medical and surgical management. In: Guell JL, editor. ESASO course series, Cornea. Basel: Krager; 2015. p. 1–25.

    Google Scholar 

  54. Rama P, Ferrari G, Pellegrini G. Cultivated limbal epithelial transplantation. Curr Opin Ophthalmol. 2017;28:387–9.

    Article  Google Scholar 

  55. Haynes RJ, Tighe PJ, Scott RA, Singh Dua H. Human conjunctiva contains high endothelial venules that express lymphocyte homing receptors. Exp Eye Res. 1999;69:397–403.

    Article  CAS  Google Scholar 

  56. Knop N, Knop E. Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci. 2000;41:1270–9.

    CAS  PubMed  Google Scholar 

  57. Chan JH, Amankwah R, Robins RA, Gray T, Dua HS. Kinetics of immune cell migration at the human ocular surface. Br J Ophthalmol. 2008;92:970–5.

    Article  CAS  Google Scholar 

  58. Dua HS, Gomes JA, Jindal VK, Appa SN, Schwarting R, Eagle RC Jr, Donoso LA, Laibson PR. Mucosa specific lymphocytes in the human conjunctiva, corneoscleral limbus and lacrimal gland. Curr Eye Res. 1994;13:87–93.

    Article  CAS  Google Scholar 

  59. Paulsen F. Functional anatomy and immunological interactions of ocular surface and adnexa. Dev Ophthalmol. 2008;41:21–35.

    Article  Google Scholar 

  60. Knop E, Knop N. Anatomy and immunology of the ocular surface. Chem Immunol Allergy. 2007;92:36–49.

    Article  CAS  Google Scholar 

  61. Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res. 2017;61:1–22.

    Article  CAS  Google Scholar 

  62. Wells JR, Michelson MA. Diagnosing and treating neurotrophic keratopathy, EyeNet Magazine. American Academy of Ophthalmology. 2008. https://www.aao.org/eyenet/article/diagnosing-treating-neurotrophic-keratopathy. Accessed 02 Apr 2018.

  63. Bonini S, Rama P, Olzi D, Lambiase A. Neurotrophic keratitis. Eye. 2003;17:989–95.

    Article  CAS  Google Scholar 

  64. Marfurt CF, Cox J, Deek S, Dvorscak L. Anatomy of the human corneal innervation. Exp Eye Res. 2010;90:478–92.

    Article  CAS  Google Scholar 

  65. Al-Aqaba MA, Fares U, Suleman H, Lowe J, Dua HS. Architecture and distribution of human corneal nerves. Br J Ophthalmol. 2010;94:784–9.

    Article  Google Scholar 

  66. Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol. 2009;93:853–60.

    Article  CAS  Google Scholar 

  67. Stepp MA, Tadvalkar G, Hakh R, Pal-Ghosh S. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves. Glia. 2017;65:851–63.

    Article  Google Scholar 

  68. Toivanen M, Tervo T, Partanen M, Vannas A, Hervonen A. Histochemical demonstration of adrenergic nerves in the stroma of human cornea. Invest Ophthalmol Vis Sci. 1987;28:398–400.

    CAS  PubMed  Google Scholar 

  69. Sugiura S, Yamaga C. Studies on the adrenergic nerve of the cornea. Nippon Ganka Gakkai Zasshi. 1968;72:872–9.

    CAS  PubMed  Google Scholar 

  70. Butler TK, Dua HS, Edwards R, Lowe JS. In vitro model of infectious crystalline keratopathy: tissue architecture determines pattern of microbial spread. Invest Ophthalmol Vis Sci. 2001;42:1243–6.

    CAS  PubMed  Google Scholar 

  71. Dhillon VK, Elalfy MS, Al-Aqaba M, Dua HS. Anaesthetic corneas with intact sub-basal nerve plexus. Br J Ophthalmol. 2014;983:417–8.

    Article  Google Scholar 

  72. Dhillon VK, Elalfy MS, Al-Aqaba M, Gupta A, Basu S, Dua HS. Corneal hypoesthesia with normal sub-basal nerve density following surgery for trigeminal neuralgia. Acta Ophthalmol. 2016;94:e6–e10.

    Article  Google Scholar 

Download references

Declaration of Interest

None of the authors have any conflict of interest related to the subject matter and content of the chapter. HS Dua is the consultant for Dompe, Santen, Thea and Shire. He has shares in NuVision BioTherapeutics and GlaxoSmithKline. No human or animal studies were carried out by the authors for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harminder Singh Dua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dua, H.S., Said, D.G. (2019). Ocular Surface Epithelium: Applied Anatomy. In: Alió, J., Alió del Barrio, J., Arnalich-Montiel, F. (eds) Corneal Regeneration . Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-01304-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01304-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01303-5

  • Online ISBN: 978-3-030-01304-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics