Skip to main content

Can Engineering Principles Help Us Understand Nervous System Robustness?

  • Chapter
  • First Online:
Biological Robustness

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 23))

Abstract

Nervous systems are formidably complex networks of nonlinear interacting components that self organise and continually adapt to enable flexible behaviour. Robust and reliable function is therefore non-trivial to achieve and requires a number of dynamic mechanisms and design principles that are the subject of current research in neuroscience. A striking feature of these principles is that they resemble engineering solutions, albeit at a greater level of complexity and layered organisation than any artificial system. I will draw on these observations to argue that biological robustness in the nervous system remains a deep scientific puzzle, but not one that demands radically new concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, L., & LeMasson, G. (1993). Analysis of neuron models with dynamically regulated conductances. Neural Computation, 5, 823–842.

    Article  Google Scholar 

  • Banker, G. A., & Cowan, W. M. (1977). Rat hippocampal neurons in dispersed cell culture. Brain Research, 126, 397–342.

    Article  Google Scholar 

  • Banker, G. A., & Cowan, W. M. (1979). Further observations on hippocampal neurons in dispersed cell culture. The Journal of Comparative Neurology, 187, 469–493.

    Article  Google Scholar 

  • Bekkers, J. M., & Stevens, C. F. (1991). Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proceedings of the National Academy of Sciences of the United States of America, 88, 7834–7838.

    Article  Google Scholar 

  • Carlson, J. M., & Doyle, J. (2000). Highly optimized tolerance: Robustness and design in complex systems. Physical Review Letters, 84, 2529–2532.

    Article  Google Scholar 

  • Conant, R. C., & Ross Ashby, W. (1970). Every good regulator of a system must be a model of that system. International Journal of Systems Science, 1, 89–97.

    Article  Google Scholar 

  • Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295, 1664–1669.

    Article  Google Scholar 

  • Davis, G. W. (2006). Homeostatic control of neural activity: From phenomenology to molecular design. Annual Review of Neuroscience, 29, 307–323.

    Article  Google Scholar 

  • Davis, G. W., & Bezprozvanny, I. (2001). Maintaining the stability of neural function: A homeostatic hypothesis. Annual Review of Physiology, 63, 847–869.

    Article  Google Scholar 

  • Desai, N. S. (2003). Homeostatic plasticity in the CNS: Synaptic and intrinsic forms. Journal of Physiology, Paris, 97, 391–402.

    Article  Google Scholar 

  • Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2, 515–520.

    Article  Google Scholar 

  • Drion, G., O’Leary, T., & Marder, E. (2015). Ion channel degeneracy enables robust and tunable neuronal firing rates. Proceedings of the National Academy of Sciences of the United States of America, 112, E5361–E5370.

    Article  Google Scholar 

  • Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98, 13763–13768.

    Article  Google Scholar 

  • Grubb, M. S., & Burrone, J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature, 465, 1070–U1131.

    Article  Google Scholar 

  • Harnack, D., Pelko, M., Chaillet, A., Chitour, Y., & van Rossum, M. C. (2015). Stability of neuronal networks with homeostatic regulation. PLoS Computational Biology, 11, e1004357.

    Article  Google Scholar 

  • Hengen, K. B., Lambo, M. E., Van Hooser, S. D., Katz, D. B., & Turrigiano, G. G. (2013). Firing rate homeostasis in visual cortex of freely behaving rodents. Neuron, 80, 335–342.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952a). The components of membrane conductance in the giant axon of Loligo. The Journal of Physiology, 116, 473–496.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952b). Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. The Journal of Physiology, 116, 449–472.

    Article  Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences (Vol. 79, pp. 2554–2558).

    Google Scholar 

  • Maffei, A., & Turrigiano, G. G. (2008). Multiple modes of network homeostasis in visual cortical layer 2/3. The Journal of Neuroscience, 28, 4377–4384.

    Article  Google Scholar 

  • Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews, 7, 563–574.

    Article  Google Scholar 

  • O’Leary, T., & Wyllie, D. J. A. (2011). Neuronal homeostasis: Time for a change? The Journal of Physiology, 589, 4811–4826.

    Article  Google Scholar 

  • O’Leary, T., van Rossum, M. C. W., & Wyllie, D. J. A. (2010). Homeostasis of intrinsic excitability in hippocampal neurones: Dynamics and mechanism of the response to chronic depolarization. The Journal of Physiology, 588, 157–170.

    Article  Google Scholar 

  • O’Leary, T., Williams, A. H., Franci, A., & Marder, E. (2014). Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron, 82, 809–821.

    Article  Google Scholar 

  • Turrigiano, G. (2007). Homeostatic signaling: The positive side of negative feedback. Current Opinion in Neurobiology, 17, 318–324.

    Article  Google Scholar 

  • Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264, 974–977.

    Article  Google Scholar 

  • Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. The Journal of Neuroscience, 15, 3640–3652.

    Article  Google Scholar 

  • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391, 892–896.

    Article  Google Scholar 

  • Wheeler, D. G., Groth, R. D., Ma, H., Barrett, C. F., Owen, S. F., Safa, P., & Tsien, R. W. (2012). Ca(V)1 and Ca(V)2 channels engage distinct modes of Ca(2+) signaling to control CREB-dependent gene expression. Cell, 149, 1112–1124.

    Article  Google Scholar 

  • Willems, J. C. (2007). The behavioral approach to open and interconnected systems. IEEE Control Systems, 27, 46–99.

    Google Scholar 

Download references

Acknowledgements

I acknowledge support from ERC-StG grant 716643 FLEXNEURO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy O’Leary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Leary, T. (2018). Can Engineering Principles Help Us Understand Nervous System Robustness?. In: Bertolaso, M., Caianiello, S., Serrelli, E. (eds) Biological Robustness. History, Philosophy and Theory of the Life Sciences, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-01198-7_9

Download citation

Publish with us

Policies and ethics