Skip to main content

Model of Improved a Kernel Fast Learning Network Based on Intrusion Detection System

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 866))

Included in the following conference series:

Abstract

The detection of network attacks on computer systems remains an attractive but challenging research scope. As network attackers keep changing their methods of attack execution to evade the deployed intrusion-detection systems (IDS), machine learning (ML) algorithms have been introduced to boost the performance of the IDS. The incorporation of a single parallel hidden layer feed-forward neural network to the Fast Learning Network (FLN) architecture gave rise to the improved Extreme Learning Machine (ELM). The input weights and hidden layer biases are randomly generated. In this paper, the particle swan optimization algorithm (PSO) was used to obtain an optimal set of initial parameters for Reduce Kernel FLN (RK-FLN), thus, creating an optimal RKFLN classifier named PSO-RKELM. The derived model was rigorously compared to four models, including basic ELM, basic FLN, Reduce Kernel ELM (RK-ELM), and RK-FLN. The approach was tested on the KDD Cup99 intrusion detection dataset and the results proved the proposed PSO-RKFLN as an accurate, reliable, and effective classification algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buczak, A., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutorials, vol. PP, no. 99, p. 1, 2015

    Google Scholar 

  2. Patel, A., Taghavi, M., Bakhtiyari, K., Celestino Jr J.: An intrusion detection and prevention system in cloud computing: a systematic review. J. Netw. Comput. Appl. 36(1), 25–41 (2013)

    Article  Google Scholar 

  3. Liao, H.-J., Lin, C.-H.R., Lin, Y.-C.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2012)

    Article  Google Scholar 

  4. Liao, H.J., Richard Lin, C.H., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a comprehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013)

    Article  Google Scholar 

  5. Tsai, C., Hsu, Y., Lin, C., Lin, W.: Expert systems with applications intrusion detection by machine learning: a review. Expert Syst. Appl. 36(10), 11994–12000 (2009)

    Article  Google Scholar 

  6. Fossaceca, J.M., Mazzuchi, T.A., Sarkani, S.: MARK-ELM: Application of a novel multiple kernel learning framework for improving the robustness of network intrusion detection. Expert Syst. Appl. 42(8), 4062–4080 (2015)

    Article  Google Scholar 

  7. Mishra, P., Pilli, E.S., Varadharajan, V., Tupakula, U.: Intrusion detection techniques in cloud environment: a survey. J. Netw. Comput. Appl. 77, pp. 18–47, October 2016

    Article  Google Scholar 

  8. Jaiganesh, V., Sumathi, P.: Kernelized extreme learning machine with levenberg-marquardt learning approach towards intrusion detection. Int. J. Comput. Appl. 54(14), 38–44 (2012)

    Google Scholar 

  9. Udaya Sampath, X.W., Perera Miriya Thanthrige, K., Samarabandu, J.: Machine learning techniques for intrusion detection. IEEE Can. Conf. Electr. Comput. Eng. 1–10 (2016)

    Google Scholar 

  10. Aslahi-Shahri, B.M., et al.: A hybrid method consisting of GA and SVM for intrusion detection system. Neural Comput. Appl. 27(6), 1669–1676 (2016)

    Article  Google Scholar 

  11. Atefi, K., Yahya, S., Dak, A.Y., Atefi, A.: A Hybrid Intrusion detection system based on differen machine learning algorithms. In: Proceedings of the 4th International Conference Computing Informatics, no. 22, pp. 312–320 (2013)

    Google Scholar 

  12. Ding, S., Xu, X., Nie, R.: Extreme learning machine and its applications. Neural Comput. Appl. 25(3–4), 549–556 (2014)

    Article  Google Scholar 

  13. Singh, R., Kumar, H., Singla, R.K.: An intrusion detection system using network traffic profiling and online sequential extreme learning machine. Expert Syst. Appl. 42(22), 8609–8624 (2015)

    Article  Google Scholar 

  14. Ali, M.H., Zolkipli, M.F., Mohammed, M.A., Jaber, M.M.: Enhance of extreme learning machine-genetic algorithm hybrid based on intrusion detection system. J. Eng. Appl. Sci. 12(16), 4180–4185 (2017)

    Google Scholar 

  15. Lu, H., Du, B., Liu, J., Xia, H., Yeap, W.K.: A kernel extreme learning machine algorithm based on improved particle swam optimization. Memetic Comput. 9(2), 121–128 (2017)

    Article  Google Scholar 

  16. Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. man, Cybern. Part B, Cybern. 42, (2), 513–529 (2012)

    Google Scholar 

  17. Pal, M., Maxwell, A.E., Warner, T.A.: Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 4(9), 853–862 (2013)

    Article  Google Scholar 

  18. Liu, B., Tang, L., Wang, J., Li, A., Hao, Y.: 2-D defect profile reconstruction from ultrasonic guided wave signals based on QGA-kernelized ELM. Neurocomputing 128, 217–223 (2014)

    Article  Google Scholar 

  19. Deng, W.Y., Zheng, Q.H., Wang, Z.M.: Cross-person activity recognition using reduced kernel extreme learning machine. Neural Netw. 53, 1–7 (2014)

    Article  Google Scholar 

  20. Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Bin Liu, W., Wang, S. J.: An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease. Neurocomputing 184, 131–144 (2016)

    Article  Google Scholar 

  21. Chen, C., Li, W., Su, H., Liu, K.: Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014)

    Article  Google Scholar 

  22. Fu, H., Vong, C.-M., Wong, P.-K., Yang, Z.: Fast detection of impact location using kernel extreme learning machine. Neural Comput. Appl. 1–10 (2014)

    Google Scholar 

  23. Li, L., Wang, C., Li, W., Chen, J.: Hyperspectral image classification by AdaBoost weighted composite kernel extreme learning machines. Neurocomputing 275, 1725–1733 (2018)

    Article  Google Scholar 

  24. Wang, Y., Wang, A.N., Ai, Q., Sun, H.J.: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease. Biomed. Signal Process. Control 38, 400–410 (2017)

    Article  Google Scholar 

  25. Wang, M., et al.: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267, 69–84 (2017)

    Article  Google Scholar 

  26. Li, X., Niu, P., Li, G.: An adaptive extreme learning machine for modeling NOx emission of a 300 MW circulating fluidized bed boiler (2017)

    Google Scholar 

  27. Li, G., Niu, P.: Combustion optimization of a coal-fired boiler with double linear fast learning network (2014)

    Article  Google Scholar 

  28. Abadeh, M.S., Mohamadi, H., Habibi, J.: Design and analysis of genetic fuzzy systems for intrusion detection in computer networks. Expert Syst. Appl. 38(6), 7067–7075 (2011)

    Article  Google Scholar 

  29. Chen, T., Zhang, X., Jin, S., Kim, O.: Efficient classification using parallel and scalable compressed model and its application on intrusion detection. Expert Syst. Appl. 41(13), 5972–5983 (2014)

    Article  Google Scholar 

  30. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature selection and classification in multiple class datasets: an application to KDD Cup 99 dataset. Expert Syst. Appl. 38(5), 5947–5957 (2011)

    Article  Google Scholar 

  31. Mitchell, R., Chen, I.-R.: A survey of intrusion detection techniques. Comput. Secur. 12(4), 405–418 (2014)

    Google Scholar 

  32. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications CISDA 2009 (June 2009)

    Google Scholar 

  33. Engen, V., Vincent, J., Phalp, K.: Exploring discrepancies in findings obtained with the KDD Cup’99 data set. Intell. Data Anal. 15(2), 251–276 (2011)

    Article  Google Scholar 

  34. Hu, W., Gao, J., Wang, Y., Wu, O., Maybank, S.: Online adaboost-based parameterized methods for dynamic distributed network intrusion detection. IEEE Trans. Cybern. 44(1), 66–82 (2014)

    Article  Google Scholar 

  35. Weller-Fahy, D.J.: Network intrusion dataset assessment, p. 114 (2013)

    Google Scholar 

  36. Chou, T.-S., Fan, J., Fan, S., Makki, K.: Ensemble of machine learning algorithms for intrusion detection. In: 2009 IEEE International Conference System Man and Cybernetics, pp. 3976–3980 (2009)

    Google Scholar 

  37. Li, G., Niu, P., Duan, X., Zhang, X.: Fast learning network: a novel artificial neural network with a fast learning speed. Neural Comput. Appl. 24(7–8), 1683–1695 (2014)

    Article  Google Scholar 

  38. Guang-Bin, H., Qin-Yu, Z., Chee-Kheong, S.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference, vol. 2, pp. 985–990. August 2004

    Google Scholar 

  39. Smola, A.J., Schölkopf, B.: Learning with Kernels. February 2002

    Google Scholar 

  40. Flynn, H., Cameron, S.: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, vol. 226 (2013)

    Chapter  Google Scholar 

  41. Trelea, I.C.: The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  Google Scholar 

  42. J. Blondin, “Particle swarm optimization: A tutorial,” … Site Http//Cs. Armstrong. Edu/Saad/Csci8100/Pso Tutor. …, pp. 1–5, 2009

    Google Scholar 

  43. Sengupta, A., Bhadauria, S., Mohanty, S.P.: TL-HLS: Methodology for Low Cost Hardware Trojan Security Aware Scheduling with Optimal Loop Unrolling Factor during High Level Synthesis. IEEE Trans. Comput. Des. Integr. Circuits Syst. 36(4), 660–673 (2017)

    Google Scholar 

  44. Mishra, V.K., Sengupta, A.: Swarm-inspired exploration of architecture and unrolling factors for nested-loop-based application in architectural synthesis. Electron. Lett. 51(2), 157–159 (2015)

    Article  Google Scholar 

  45. Sengupta, A., Bhadauria, S.: User power-delay budget driven PSO based design space exploration of optimal k-cycle transient fault secured datapath during high level synthesis. In: Proceedings of the International Symposium Quality Electronic Design ISQED, vol. 2015, no. 6, pp. 289–292 (2015)

    Google Scholar 

  46. Mishra, V.K., Sengupta, A.: MO-PSE: Adaptive multi-objective particle swarm optimization based design space exploration in architectural synthesis for application specific processor design. Adv. Eng. Softw. 67, 111–124 (2014)

    Article  Google Scholar 

  47. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69–73 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Hasan Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, M.H., Zolkipli, M.F. (2019). Model of Improved a Kernel Fast Learning Network Based on Intrusion Detection System. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and Computing, vol 866. Springer, Cham. https://doi.org/10.1007/978-3-030-00979-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00979-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00978-6

  • Online ISBN: 978-3-030-00979-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics