Skip to main content

Pulmonary Manifestations of Other Well-Defined Immunodeficiencies

  • Chapter
  • First Online:
Pulmonary Manifestations of Primary Immunodeficiency Diseases
  • 419 Accesses

Abstract

To date, various conditions with immunodeficiency accompanied by different systemic features have been classified as other well-defined primary immunodeficiencies (PIDs). Many aspects of these diseases remain unknown due to their rarity. Furthermore, in clinical care, it was pointed out that morbidities of disorders continued to be under-recognized and sometimes under-managed. Respiratory manifestations are common in PIDs including other well-defined ones. However, they remained underappreciated in literature, while they are one of the commonest causes of death among this population. Recurrent upper and lower respiratory tract infections as the result of immunodeficiency are the most frequent respiratory features in these diseases. By underestimating these infections, different complications such as bronchiectasis may occur which can lead to poorer prognosis and even early death of patients. Intravenous immunoglobulin (IVIg) therapy is now a good option in treatment and prevention of these infections. Also, stem cell transplant is a choice for long-term prevention due to repairing immune system. Other reported pathologic respiratory tract features in individuals with other well-defined PIDs include asthma and malignancies. Overall, in this chapter, we review different conditions in other well-defined PIDs which their respiratory manifestations were reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gennery AR, Marodi L, Ziegler JB, Español T, Grimbacher B. Other well-defined immunodeficiencies. In: Rezaei N, Aghamohammadi A, Notarangelo L, editors. Primary immunodeficiency diseases. Berlin/Heidelberg: Springer; 2017.

    Google Scholar 

  2. Comel M. Ichthyosis linearis circumflexa. Dermatologica. 1949;98:133–6.

    Article  CAS  PubMed  Google Scholar 

  3. Boder E, Sedgwick RP. A familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection: a preliminary report on 7 children, an autopsy, and a case history. Univ South Calif Med Bull. 1957;9:15–28.

    Google Scholar 

  4. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet. 1986;39:573–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11:159.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lin DD, Barker PB, Lederman HM, Crawford TO. Cerebral abnormalities in adults with ataxia-telangiectasia. AJNR Am J Neuroradiol. 2014;35:119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lefton-Greif MA, Crawford TO, Winkelstein JA, Loughlin GM, Koerner CB, Zahurak M, Lederman HM. Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr. 2000;136:225–31.

    Article  CAS  PubMed  Google Scholar 

  8. Nissenkorn A, Levy-Shraga Y, Banet-Levi Y, Lahad A, Sarouk I, Modan-Moses D. Endocrine abnormalities in ataxia telangiectasia: findings from a national cohort. Pediatr Res. 2016;79:889–94.

    Article  CAS  PubMed  Google Scholar 

  9. Connelly PJ, Smith N, Chadwick R, Exley AR, Shneerson JM, Pearson ER. Recessive mutations in the cancer gene Ataxia Telangiectasia mutated (ATM), at a locus previously associated with metformin response, cause dysglycaemia and insulin resistance. Diabet Med. 2016;33:371–5.

    Article  CAS  PubMed  Google Scholar 

  10. McGrath-Morrow SA, Sterni L, McGinley B, Lefton-Greif MA, Rosquist K, Lederman H. Polysomnographic values in adolescents with ataxia telangiectasia. Pediatr Pulmonol. 2008;43:674–9.

    Article  PubMed  Google Scholar 

  11. Mostofsky SH, Kunze JC, Cutting LE, Lederman HM, Denckla MB. Judgment of duration in individuals with ataxia-telangiectasia. Dev Neuropsychol. 2000;17:63–74.

    Article  CAS  PubMed  Google Scholar 

  12. Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, Jais JP, Fischer A, Hermine O, Stoppa-Lyonnet D. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2014;33:202–8.

    Article  PubMed  Google Scholar 

  13. Driessen GJ, Jspeert H, Weemaes CM, Haraldsson Á, Trip M, Warris A, van der Flier M, Wulffraat N, Verhagen MM, Taylor MA, van Zelm MC. Antibody deficiency in patients with ataxia telangiectasia is caused by disturbed B- and T-cell homeostasis and reduced immune repertoire diversity. J Allergy Clin Immunol. 2013;131:1367–75.e9.

    Article  CAS  PubMed  Google Scholar 

  14. Kraus M, Lev A, Simon AJ, Levran I, Nissenkorn A, Levi YB, Berkun Y, Efrati O, Amariglio N, Rechavi G, Somech R. Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. J Clin Immunol. 2014;34:561–72.

    Article  CAS  PubMed  Google Scholar 

  15. Pasini AM, Gagro A, Roić G, Vrdoljak O, Lujić L, Žutelija-Fattorini M. Ataxia telangiectasia and juvenile idiopathic arthritis. Pediatrics. 2017;139:e20161279.

    Article  PubMed  Google Scholar 

  16. Patiroglu T, Gungor H, Unal E. Autoimmune diseases detected in children with primary immunodeficiency diseases: results from a reference centre at middle anatolia. Acta Microbiol Immunol Hung. 2012;59:343–53.

    Article  CAS  PubMed  Google Scholar 

  17. Boder E. Ataxia–telangiectasia: some historic, clinical and pathologic observations. Birth Defects Orig Artic Ser. 1975;11:255–70.

    CAS  PubMed  Google Scholar 

  18. Schroeder SA, Zielen S. Infections of the respiratory system in patients with ataxia–telangiectasia. Pediatr Pulmonol. 2014;49:389–99.

    Article  PubMed  Google Scholar 

  19. Vilozni D, Lavie M, Sarouk I, Bar-Aluma BE, Dagan A, Ashkenazi M, Ofek M, Efrati O. FVC deterioration, airway obstruction determination, and life span in Ataxia telangiectasia. Respir Med. 2015;109:890–6.

    Article  PubMed  Google Scholar 

  20. Berkun Y, Vilozni D, Levi Y, Borik S, Waldman D, Somech R, Nissenkorn A, Efrati O. Reversible airway obstruction in children with ataxia telangiectasia. Pediatr Pulmonol. 2010;45:230–5.

    PubMed  Google Scholar 

  21. McGrath-Morrow SA, Collaco JM, Detrick B, Lederman HM. Serum interleukin-6 levels and pulmonary function in ataxia-telangiectasia. J Pediatr. 2016;171:256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amanat M, Salehi M, Rezaei N. Neurological and psychiatric disorders in psoriasis. Rev Neurosci. 2018;29:805–13. https://doi.org/10.1515/revneuro-2017-0108.

    Article  PubMed  Google Scholar 

  23. Weemaes CM, Hustinx TW, Scheres JM, van Munster PJ, Bakkeren JA, Taalman RD. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand. 1981;70:557–64.

    Article  CAS  PubMed  Google Scholar 

  24. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, Beckmann G, Seemanová E, Cooper PR, Nowak NJ, Stumm M. Nibrin, a novel DNA double strand break protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93:467–76.

    Article  CAS  PubMed  Google Scholar 

  25. Varon R, Seemanova E, Chrzanowska K, Hnateyko O, Piekutowska-Abramczuk D, Krajewska-Walasek M. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three slav populations. Eur J Hum Genet. 2000;8:900–2.

    Article  CAS  PubMed  Google Scholar 

  26. Varon R, Demuth I, Digweed M. Nijmegen breakage syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews®. Seattle: University of Washington; 1993. (updated 2017).

    Google Scholar 

  27. Wolska-Kuśnierz B, Gregorek H, Chrzanowska K, Piątosa B, Pietrucha B, Heropolitańska-Pliszka E, Pac M, Klaudel-Dreszler M, Kostyuchenko L, Pasic S, Marodi L. Nijmegen breakage syndrome: clinical and immunological features, long-term outcome and treatment options–a retrospective analysis. J Clin Immunol. 2015;35:538–49.

    Article  PubMed  CAS  Google Scholar 

  28. Bloom D. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity. AMA Am J Dis Child. 1954;88:754–8.

    CAS  PubMed  Google Scholar 

  29. Sanz MM, German J. Bloom’s syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, Ledbetter N, Hand JL, editors. GeneReviews®. Seattle: University of Washington; 2006. (updated 2016).

    Google Scholar 

  30. Cunniff C, Bassetti JA, Ellis NA. Bloom's syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8:4–23.

    Article  CAS  PubMed  Google Scholar 

  31. Postema FA, Hopman SM, Hennekam RC, Merks JH. Consequences of diagnosing a tumor predisposition syndrome in children with cancer: a literature review. Pediatr Blood Cancer. 2018;65:e26718.

    Article  Google Scholar 

  32. Schoenaker MH, Henriet SS, Zonderland J, van Deuren M, Pan-Hammarström Q, Posthumus-van Sluijs SJ, Pico-Knijnenburg I, Weemaes CM, IJspeert H. Immunodeficiency in Bloom’s syndrome. J Clin Immunol. 2018;38:35–44.

    Article  CAS  PubMed  Google Scholar 

  33. Relhan V, Sinha S, Bhatnagar T, Garg VK, Kochhar A. Bloom syndrome with extensive pulmonary involvement in a child. Indian J Dermatol. 2015;60:217.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tiepolo L, Maraschio P, Gimelli G, Cuoco C, Gargani GF. Romano C multibranched chromosomes 1, 9, and 16 in a patient with combined IgA and IgE deficiency. Hum Genet. 1979;51:127–37.

    Article  CAS  PubMed  Google Scholar 

  35. Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999;402:187–91.

    Article  CAS  PubMed  Google Scholar 

  36. de Greef JC, Wang J, Balog J, den Dunnen JT, Frants RR, Straasheijm KR, Aytekin C, van der Burg M, Duprez L, Ferster A, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet. 2011;88:796–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, Unoki M, Yoshihara M, Suyama M, Sun Y, Lemmers RJ. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6:7870.

    Article  CAS  PubMed  Google Scholar 

  38. Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, Suarez F, Francastel C, Picard C. Genetic, cellular and clinical features of ICF syndrome: a French national survey. J Clin Immunol. 2016;36:149–59.

    Article  CAS  PubMed  Google Scholar 

  39. Weemaes CM, Van Tol MJ, Wang J, Van Ostaijen-Ten Dam MM, Van Eggermond MC, Thijssen PE, Aytekin C, Brunetti-Pierri N, Van Der Burg M, Davies EG, Ferster A. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet. 2013;21:1219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. von Bernuth H, Ravindran E, Du H, Fröhler S, Strehl K, Krämer N, Issa-Jahns L, Amulic B, Ninnemann O, Xiao MS, Eirich K. Combined immunodeficiency develops with age in immunodeficiency-centromeric instability-facial anomalies syndrome 2 (ICF2). Orphanet J Rare Dis. 2014;9:116.

    Article  Google Scholar 

  41. Gössling KL, Schipp C, Fischer U, Babor F, Koch G, Schuster FR, Dietzel-Dahmen J, Wieczorek D, Borkhardt A, Meisel R, Kuhlen M. Hematopoietic stem cell transplantation in an infant with immunodeficiency, centromeric instability, and facial anomaly syndrome. Front Immunol. 2017;8:773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nicolaides NC, Carter KC, Shell BK, Papadopoulos N, Vogelstein B, Kinzler KW. Genomic organization of the human PMS2 gene family. Genomics. 1995;30:195–206.

    Article  CAS  PubMed  Google Scholar 

  43. Pal T, Permuth-Wey J, Sellers TA. A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer. 2008;113:733–42.

    Article  PubMed  Google Scholar 

  44. Collins SL, Hervé R, Keevil CW, Blaydes JP, Webb JS. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids. PLoS One. 2011;6:e28123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ponti G, Castellsagué E, Ruini C, Percesepe A, Tomasi A. Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome. Clin Genet. 2015;87:507–16.

    Article  CAS  PubMed  Google Scholar 

  46. Dudley B, Brand RE, Thull D, Bahary N, Nikiforova MN, Pai RK. Germline MLH1 mutations are frequently identified in Lynch syndrome patients with colorectal and endometrial carcinoma demonstrating isolated loss of PMS2 immunohistochemical expression. Am J Surg Pathol. 2015;39:1114–20.

    Article  PubMed  Google Scholar 

  47. Gill S, Lindor NM, Burgart LJ, Smalley R, Leontovich O, French AJ, Goldberg RM, Sargent DJ, Jass JR, Hopper JL, Jenkins MA. Isolated loss of PMS2 expression in colorectal cancers: frequency, patient age, and familial aggregation. Clin Cancer Res. 2005;11:6466–71.

    Article  CAS  PubMed  Google Scholar 

  48. Alpert L, Pai RK, Srivastava A, McKinnon W, Wilcox R, Yantiss RK, Arcega R, Wang HL, Robert ME, Liu X, Pai RK. Colorectal carcinomas with isolated loss of PMS2 staining by immunohistochemistry. Arch Pathol Lab Med. 2018;142:523–8.

    Article  PubMed  Google Scholar 

  49. Ten Broeke SW, van Bavel TC, Jansen AM, Gómez-García E, Hes FJ, van Hest LP, Letteboer TG, Olderode-Berends MJ, Ruano D, Spruijt L, Suerink M. Molecular background of colorectal tumors from patients with Lynch syndrome associated with germline variants in PMS2. Gastroenterology. 2018; https://doi.org/10.1053/j.gastro.2018.05.020.

    Article  CAS  PubMed  Google Scholar 

  50. Abolhassani H, Akbari F, Mirminachi B, Bazregari S, Hedayat E, Rezaei N, Aghamohammadi A. Morbidity and mortality of Iranian patients with hyper IgM syndrome: a clinical analysis. Iran J Immunol. 2014;11:123–33.

    PubMed  Google Scholar 

  51. Péron S, Metin A, Gardès P, Alyanakian MA, Sheridan E, Kratz CP, Fischer A, Durandy A. Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J Exp Med. 2008;205:2465–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Krauthammer A, Lahad A, Goldberg L, Sarouk I, Weiss B, Somech R, Soudack M, Pessach IM. Elevated IgM levels as a marker for a unique phenotype in patients with Ataxia telangiectasia. BMC Pediatr. 2018;18:185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Piątosa B, van der Burg M, Siewiera K, Pac M, van Dongen JJ, Langerak AW, Chrzanowska KH, Bernatowska E. The defect in humoral immunity in patients with Nijmegen breakage syndrome is explained by defects in peripheral B lymphocyte maturation. Cytometry A. 2012;81:835–42.

    Article  PubMed  CAS  Google Scholar 

  54. Cooper H, Hirschhorn K. Apparent deletion of short arms of one chromosome (4 or 5) in a child with defects of midline fusion. Mamm Chrom Nwsl. 1961;4:14.

    Google Scholar 

  55. Wolf U, Reinwein H, Porsch R, Schröter R, Baitsch H. Defizienz an den kurzen Armen eines Chromosomes Nr. 4. Humangenetik. 1965;1:397–413.

    Article  CAS  PubMed  Google Scholar 

  56. Shannon NL, Maltby EL, Rigby AS, Quarrell OWJ. An epidemiological study of Wolf-Hirschhorn syndrome: life expectancy and cause of mortality. J Med Genet. 2001;38:674–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zollino M, Lecce R, Fischetto R, Murdolo M, Faravelli F, Selicorni A, Buttè C, Memo L, Capovilla G, Neri G. Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2. Am J Hum Genet. 2003;75:590–7.

    Article  Google Scholar 

  58. Battaglia A, Carey JC, South ST. Wolf-Hirschhorn syndrome: a review and update. Am J Med Genet C Semin Med Genet. 2015;169:216–23.

    Article  PubMed  Google Scholar 

  59. Battaglia A, Filippi T, South ST, Carey JC. Spectrum of epilepsy and electroencephalogram patterns in Wolf–Hirschhorn syndrome: experience with 87 patients. Dev Med Child Neurol. 2009;51:373–80.

    Article  PubMed  Google Scholar 

  60. Hanley-Lopez J, Estabrooks LL, Stiehm ER. Antibody deficiency in Wolf-Hirschhorn syndrome. J Pediatr. 1998;133:141–3.

    Article  CAS  PubMed  Google Scholar 

  61. Rauch A, Schellmoser S, Kraus C, Dörr HG, Trautmann U, Altherr MR, Pfeiffer RA, Reis A. First known microdeletion within the Wolf-Hirschhorn syndrome critical region refines genotype–phenotype correlation. Am J Med Genet. 2001;99:338–42.

    Article  CAS  PubMed  Google Scholar 

  62. Paradowska-Stolarz AM. Wolf-Hirschhorn syndrome (WHS)-literature review on the features of the syndrome. Adv Clin Exp Med. 2014;23:485–9.

    Article  PubMed  Google Scholar 

  63. Davis SD, Schaller J, Wdegewood RJ. Job’s syndrome. Recurrent, “cold”, staphylococcal abscesses. Lancet. 1966;1:1013–5.

    Article  CAS  PubMed  Google Scholar 

  64. Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics. 1972;49:59–70.

    CAS  PubMed  Google Scholar 

  65. Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, Kawamura N, Ariga T, Pasic S, Stojkovic O, Metin A, Karasuyama H. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.

    Article  CAS  PubMed  Google Scholar 

  66. Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, Chen A, Kim HS, Lloret MG, Schulze I, Ehl S. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124:1289–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Woellner C, Schäffer AA, Puck JM, Renner ED, Knebel C, Holland SM, Plebani A, Grimbacher B. The hyper IgE syndrome and mutations in TYK2. Immunity. 2007;26:535.

    Article  CAS  PubMed  Google Scholar 

  68. Yang L, Fliegauf M, Grimbacher B. Hyper-IgE syndromes: reviewing PGM3 deficiency. Curr Opin Pediatr. 2014;26:697–703.

    Article  CAS  PubMed  Google Scholar 

  69. Chandesris MO, Melki I, Natividad A, Puel A, Fieschi C, Yun L, Thumerelle C, Oksenhendler E, Boutboul D, Thomas C, Hoarau C. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome molecular, cellular, and clinical features from a French national survey. Medicine (Baltimore). 2012;91:e1–19.

    Article  CAS  PubMed Central  Google Scholar 

  70. Zhang Q, Davis JC, Dove CG, Su HC. Genetic, clinical, and laboratory markers for DOCK8 immunodeficiency syndrome. Dis Markers. 2010;29:131–9.

    Article  PubMed  Google Scholar 

  71. Renner ED, Puck JM, Holland SM, Schmitt M, Weiss M, Frosch M, Bergmann M, Davis J, Belohradsky BH, Grimbacher B. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr. 2004;144:93–9.

    Article  CAS  PubMed  Google Scholar 

  72. Mogensen TH. STAT3 and the hyper-IgE syndrome: clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. JAKSTAT. 2013;2:e23435.

    PubMed  PubMed Central  Google Scholar 

  73. Jiao H, Toth B, Erdos M, Fransson I, Rakoczi E, Balogh I, Magyarics Z, Derfalvi B, Csorba G, Szaflarska A, Megarbane A, Akatcherian C, Dbaibo G, Rajnavolgyi E, Hammarstrom L, Kere J, Lefranc G, Marodi L. Novel and recurrent STAT3 mutations in hyper-IgE syndrome patients from different ethnic groups. Mol Immunol. 2008;46:202–6.

    Article  CAS  PubMed  Google Scholar 

  74. Schimke LF, Sawalle-Belohradsky J, Roesler J, Wollenberg A, Rack A, Borte M, Rieber N, Cremer R, Maass E, Dopfer R, Reichenbach J, Wahn V, Hoenig M, Jansson AF, Roesen-Wolff A, Schaub B, Seger R, Hill HR, Ochs HD, Torgerson TR, Belohradsky BH, Renner ED. Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol. 2010;126:611–617.e1.

    Article  CAS  PubMed  Google Scholar 

  75. Woellner C, Gertz EM, Schaffer AA, Lagos M, Perro M, Glocker EO, Pietrogrande MC, Cossu F, Franco JL, Matamoros N, Pietrucha B, Heropolitanska-Pliszka E, Yeganeh M, Moin M, Espanol T, Ehl S, Gennery AR, Abinun M, Breborowicz A, Niehues T, Kilic SS, Junker A, Turvey SE, Plebani A, Sanchez B, Garty BZ, Pignata C, Cancrini C, Litzman J, Sanal O, Baumann U, Bacchetta R, Hsu AP, Davis JN, Hammarstrom L, Davies EG, Eren E, Arkwright PD, Moilanen JS, Viemann D, Khan S, Marodi L, Cant AJ, Freeman AF, Puck JM, Holland SM, Grimbacher B. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125:424–432.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aydin SE, Kilic SS, Aytekin C, Kumar A, Porras O, Kainulainen L, Kostyuchenko L, Genel F, Kütükcüler N, Karaca N, Gonzalez-Granado L. DOCK8 deficiency: clinical and immunological phenotype and treatment options-a review of 136 patients. J Clin Immunol. 2015;35:189–98.

    Article  CAS  PubMed  Google Scholar 

  77. Tsuge I, Ito K, Ohye T, Kando N, Kondo Y, Nakajima Y, Inuo C, Kurahashi H, Urisu A. Acute eosinophilic pneumonia occurring in a dedicator of cytokinesis 8 (DOCK8) deficient patient. Pediatr Pulmonol. 2014;49:E52–5.

    Article  PubMed  Google Scholar 

  78. Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, Patiroglu T, Unal E, Ozdemir MA, Jouhadi Z, Khadir K. Hypomorphic homozygous mutations in & phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J Allergy Clin Immunol. 2014;133:1410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, Jing H, Kim ES, Biancalana M, Wolfe LA, DiMaggio T. Autosomal recessive phosphoglucomutase & 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133:1400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wiskott A. Familiarer, angeborener Morbus Werlhofii? Monatsschr Kinderheilkd. 1937;68:212–6.

    Google Scholar 

  81. Puck JM, Candotti F. Lessons from the Wiskott-Aldrich syndrome. N Engl J Med. 2006;355:1759–61.

    Article  CAS  PubMed  Google Scholar 

  82. Derry JM, Ochs HD, Francke U. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell. 1994;78:635–44.

    Article  CAS  PubMed  Google Scholar 

  83. Kirchhausen T, Rosen FS. Disease mechanism: unravelling Wiskott–Aldrich syndrome. Curr Biol. 1996;6:676–8.

    Article  CAS  PubMed  Google Scholar 

  84. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994;125:876–85.

    Article  CAS  PubMed  Google Scholar 

  85. Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, Strina D, Patrosso MC, Ramenghi U, Sacco MG, Ugazio A. X–linked thrombocytopenia and Wiskott–Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet. 1995;9:414–7.

    Article  CAS  PubMed  Google Scholar 

  86. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, Chen SH, Ochs HD. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood. 1995;86:3797–804.

    CAS  PubMed  Google Scholar 

  87. Ancliff PJ, Blundell MP, Cory GO, Calle Y, Worth A, Kempski H, Burns S, Jones GE, Sinclair J, Kinnon C, Hann IM. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood. 2006;108:2182–9.

    Article  CAS  PubMed  Google Scholar 

  88. Beel K, Cotter MM, Blatny J, Bond J, Lucas G, Green F, Vanduppen V, Leung DW, Rooney S, Smith OP, Rosen MK. A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene. Br J Haematol. 2009;144:120–6.

    Article  PubMed  Google Scholar 

  89. Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van den Oord JJ, Verhoef GE, Boogaerts MA, Fryns JP, You D, Rosen MK. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. 2001;27:313–7.

    Article  CAS  PubMed  Google Scholar 

  90. Ochs HD, Slichter SJ, Harker LA, Von Behrens WE, Clark RA, Wedgwood RJ. The Wiskott-Aldrich syndrome: studies of lymphocytes, granulocytes, and. Blood. 1980;55:243–52.

    CAS  PubMed  Google Scholar 

  91. Park JY, Kob M, Prodeus AP, Rosen FS, Shcherbina A, Remold-O’Donnell E. Early deficit of lymphocytes in Wiskott–Aldrich syndrome: possible role of WASP in human lymphocyte maturation. Clin Exp Immunol. 2004;136:104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Westerberg L, Larsson M, Hardy SJ, Fernández C, Thrasher AJ, Severinson E. Wiskott-Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response. Blood. 2005;105:1144–52.

    Article  CAS  PubMed  Google Scholar 

  93. Recher M, Burns SO, Miguel A, Volpi S, Dahlberg C, Walter JE, Moffitt K, Mathew D, Honke N, Lang PA, Patrizi L. B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein causes severe abnormalities of the peripheral B-cell compartment in mice. Blood. 2012;119:2819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Westerberg LS, Dahlberg C, Baptista M, Moran CJ, Detre C, Keszei M, Eston MA, Alt FW, Terhorst C, Notarangelo LD, Snapper SB. Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B cell development and function. Blood. 2012;119:3966–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, de Saint BG, Delaunay J, Schwarz K, Casanova JL, Blanche S. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003;111:e622–7.

    Article  PubMed  Google Scholar 

  96. Blaese RM, Strober W, Brown R, Waldmann T. The Wiskott-Aldrich syndrome a disorder with a possible defect in antigen processing or recognition. Lancet. 1968;291:1056–61.

    Article  Google Scholar 

  97. Cooper MD, Chase HP, Lowman JT, Krivit W, Good RA. Wiskott-Aldrich syndrome: an immunologic deficiency disease involving the afferent limb of immunity. Am J Med. 1968;44:499–513.

    Article  CAS  PubMed  Google Scholar 

  98. Westerberg LS, Miguel A, Wermeling F, Ochs HD, Karlsson MC, Snapper SB, Notarangelo LD. WASP confers selective advantage for specific hematopoietic cell populations and serves a unique role in marginal zone B-cell homeostasis and function. Blood. 2008;112:4139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jeanes AC, Owens CM. Chest imaging in the immunocompromised child. Paediatr Respir Rev. 2002;3:59–69.

    PubMed  Google Scholar 

  100. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafé JL, Wilkinson J, Taïeb A, Barrandon Y, Harper JI. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25:141–2.

    Article  CAS  PubMed  Google Scholar 

  101. Hachem JP, Wagberg F, Schmuth M, Crumrine D, Lissens W, Jayakumar A, Houben E, Mauro TM, Leonardsson G, Brattsand M, Egelrud T. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol. 2006;126:1609–21.

    Article  CAS  PubMed  Google Scholar 

  102. Renner ED, Hartl D, Rylaarsdam S, Young ML, Monaco-Shawver L, Kleiner G, Markert ML, Stiehm ER, Belohradsky BH, Upton MP, Torgerson TR. Comel-Netherton syndrome defined as primary immunodeficiency. J Allergy Clin Immunol. 2009;124:536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ming JE, Stiehm ER, Graham JM Jr. Syndromes associated with immunodeficiency. Adv Pediatr Infect Dis. 1999;46:271–351.

    CAS  Google Scholar 

  104. Kutsal E, Gücüyener K, Bakirtaş A, Eldeş N, Oztaş M, Dursun A. Youngest netherton patient with infantile asthma. Tuberk Toraks. 2008;56:104–8.

    PubMed  Google Scholar 

  105. Okulu E, Tunc G, Erdeve O, Mumcu Y, Atasay B, Ince E, Arsan S. Netherton syndrome: a neonatal case with respiratory insufficiency. Arch Argent Pediatr. 2018;116:e609–11.

    PubMed  Google Scholar 

  106. Macknet CA, Morkos A, Job L, Garberoglio MC, Clark RD, Macknet KD Jr, Peverini RL. An infant with Netherton syndrome and persistent pulmonary hypertension requiring extracorporeal membrane oxygenation. Pediatr Dermatol. 2008;25:368–72.

    Article  PubMed  Google Scholar 

  107. Engman MF. A unique case of reticular pigmentation of the skin with atrophy. Arch Bleg Dermatol Syphiligr. 1926;13:685–7.

    Article  Google Scholar 

  108. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19:32–8.

    Article  CAS  PubMed  Google Scholar 

  109. Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, Al-Qurashi FH, Aljurf M, Dokal I. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum Mol Genet. 2007;16:1619–29.

    Article  CAS  PubMed  Google Scholar 

  110. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature. 2001;413:432–5.

    Article  CAS  PubMed  Google Scholar 

  111. Connor JM, Teague RH. Dyskeratosis congenita. Report of a large kindred. Br J Dermatol. 1981;105:321–5.

    Article  CAS  PubMed  Google Scholar 

  112. Drachtman RA, Alter BP. Dyskeratosis congenita: clinical and genetic heterogeneity. Report of a new case and review of the literature. Am J Pediatr Hematol Oncol. 1992;14:297–304.

    Article  CAS  PubMed  Google Scholar 

  113. Dokal I. Dyskeratosis congenita in all its forms. Br J Hematol. 2000;110:768–79.

    Article  CAS  Google Scholar 

  114. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113:6549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jyonouchi S, Forbes L, Ruchelli E, Sullivan KE. Dyskeratosis congenita: a combined immunodeficiency with broad clinical spectrum–a single-center pediatric experience. Pediatr Allergy Immunol. 2011;22:313–9.

    Article  CAS  PubMed  Google Scholar 

  116. Borggraefe I, Koletzko S, Arenz T, Fuehrer M, Hoffmann F, Dokal I, Vulliamy T, Weiler V, Griese M, Belohradsky BH, Lang T. Severe variant of x-linked dyskeratosis congenita (hoyeraal-hreidarsson syndrome) causes significant enterocolitis in early infancy. J Pediatr Gastroenterol Nutr. 2009;49:359–63.

    Article  PubMed  Google Scholar 

  117. Ballew BJ, Savage SA. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol. 2013;6:327–37.

    Article  CAS  PubMed  Google Scholar 

  118. Gordijn SJ, Brand PL. A boy with breathlessness, digital clubbing and central cyanosis. Eur J Pediatr. 2004;163:129–30.

    Article  PubMed  Google Scholar 

  119. Samuel BP, Duffner UA, Abdel-Mageed AS, Vettukattil JJ. Pulmonary arteriovenous malformations in dyskeratosis congenita. Pediatr Dermatol. 2015;32:e165–6.

    Article  PubMed  Google Scholar 

  120. Khincha PP, Bertuch AA, Agarwal S, Townsley DM, Young NS, Keel S, Shimamura A, Boulad F, Simoneau T, Justino H, Kuo C. Pulmonary arteriovenous malformations: an uncharacterised phenotype of dyskeratosis congenita and related telomere biology disorders. Eur Respir J. 2017;49:1601640.

    Article  CAS  Google Scholar 

  121. Yabe M, Yabe H, Hattori K, Morimoto T, Hinohara T, Takakura I, Shimizu T, Shimamura K, Tang X, Kato S. Fatal interstitial pulmonary disease in a patient with dyskeratosis congenita after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1997;19:389–92.

    Article  CAS  PubMed  Google Scholar 

  122. Sorge C, Pereboeva L, Westin E, Harris WT, Kelly DR, Goldman F. Pulmonary complications post hematopoietic stem cell transplant in dyskeratosis congenita: analysis of oxidative stress in lung fibroblasts. Bone Marrow Transplant. 2017;52:765–8.

    Article  CAS  PubMed  Google Scholar 

  123. Giri N, Ravichandran S, Fontana J, Alter BP, Khincha P, Savage SA. Prognostic significance of pulmonary function test abnormalities in patients with dyskeratosis congenita. Blood. 2016;128:2672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amanat, M., Salehi, M., Rezaei, N. (2019). Pulmonary Manifestations of Other Well-Defined Immunodeficiencies. In: Mahdaviani, S., Rezaei, N. (eds) Pulmonary Manifestations of Primary Immunodeficiency Diseases . Springer, Cham. https://doi.org/10.1007/978-3-030-00880-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00880-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00879-6

  • Online ISBN: 978-3-030-00880-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics