Skip to main content

Purinergic Signaling at Tripartite Synapses

  • Chapter
  • First Online:
Computational Glioscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

  • 1080 Accesses

Abstract

Astrocytes modulate synaptic transmission and plasticity via the release of gliotransmitters. ATP release by astrocytes and its chief metabolite, adenosine mediate astrocyte-neuron crosstalk through a plethora of ionotropic and metabotropic purinergic receptors and provide a unique framework that enables bidirectional modulation of neuronal excitability over a range of spatial and temporal scales. More recently dysregulation in purinergic signaling has also been associated with several disorders. The complexity of purinergic signaling and overlapping signaling pathways used by astrocytes and neurons makes it difficult to quantify the precise contribution of astrocytic release to function and yet provide a fertile ground for computational and modeling approaches. Here we review seminal experimental evidence on feedback and feedforward regulation of neuronal activity by astrocytes by means of purinergic signaling and pinpoint the essential requirements for a modeling framework to study this signaling at tripartite synapses. The ultimate goal would be to quantify the diverse functions of purinergic transmission stemming from a large variety of receptor type and spatiotemporal landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP (2006) International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  CAS  PubMed  Google Scholar 

  • Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Sig 2:595–604

    Article  CAS  Google Scholar 

  • Alloisio S, Cervetto C, Passalacqua M, Barbieri R, Maura G, Nobile M, Marcoli M (2008) Functional evidence for presynaptic P2X7 receptors in adult rat cerebrocortical nerve terminals. FEBS Lett 582:3948–3953

    Article  CAS  PubMed  Google Scholar 

  • Ambrósio AF, Malva JO, Carvalho AP, Carvalho CM (1997) Inhibition of N-, P/Q- and other types of Ca2+ channels in rat hippocampal nerve terminals by the adenosine A1 receptor. Eur J Pharmacol 340:301–310

    Article  PubMed  Google Scholar 

  • Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte–neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34:489–504

    Article  PubMed  Google Scholar 

  • Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacaj T, Wu D, Yang X, Morishita W, Zhou P, Xu W, Malenka RC, Südhof TC (2013) Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 80:947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellinger S (2005) Modeling calcium wave oscillations in astrocytes. Neurocomputing 65(66):843–850

    Article  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2005) A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks. Biophys J 89:2235–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhäuser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  CAS  PubMed  Google Scholar 

  • Bo X (2003) Pharmacological and biophysical properties of the human P2X5 receptor. Mol Pharmacol 63:1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Boitano S, Dirksen ER, Sanderson MJ (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258:292–295

    Article  CAS  PubMed  Google Scholar 

  • Bollmann JH (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957

    Article  CAS  PubMed  Google Scholar 

  • Bowser DN, Khakh BS (2007a) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowser DN, Khakh BS (2007b) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci 104:4212–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  • Calì C, Marchaland J, Regazzi R, Bezzi P (2008) SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 198:82–91

    Article  PubMed  CAS  Google Scholar 

  • Cass CE, Young JD, Baldwin SA (1998) Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol 76:761–770

    Article  CAS  PubMed  Google Scholar 

  • Chandaka GK, Drobny H, Boehm S (2008) Facilitation of transmitter release from rat sympathetic neurons via presynaptic P2Y1 receptors. BMC Pharmacol 8:A8

    Article  PubMed Central  Google Scholar 

  • Chen X (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25:9236–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X-K (2006) “Kiss-and-run” exocytosis in astrocytes. Neurosci 12:375–378

    CAS  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  CAS  PubMed  Google Scholar 

  • Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: Insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–582

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA (2008) Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurochem Int 52:65–72

    Article  CAS  PubMed  Google Scholar 

  • Dani JW, Chernavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocytic networks. Neuron 8:429–440

    Article  CAS  PubMed  Google Scholar 

  • De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Sachs F (1999) Single channel properties of P2X2 purinoceptors. J Gen Physiol 113:695–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-σ and prostaglandins. J Biol Chem 281:30684–30696

    Article  CAS  PubMed  Google Scholar 

  • Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68:213–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JR, Gibson WG (2010) A model for Ca2+ waves in networks of glial cells incorporating both intercellular and extracellular communication pathways. J Theor Biol 263:45–58

    Article  CAS  PubMed  Google Scholar 

  • Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  CAS  PubMed  Google Scholar 

  • Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24:3413–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan TM, Samways DSK, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch Eur J Physiol 452:501–512

    Article  CAS  Google Scholar 

  • Evanko DS, Zhang Q, Zorec R, Haydon PG (2004) Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 47:233–240

    Article  PubMed  Google Scholar 

  • Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505

    Article  CAS  PubMed  Google Scholar 

  • Fellin T (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21:208–215

    Article  CAS  PubMed  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  CAS  PubMed  Google Scholar 

  • Giaume C, Leybaert L, Naus CC, Sáez JC (2013) Connexin and pannexin hemichannels in brain glial cells: Properties, pharmacology, and roles. Front Pharmacol 4(JUL):1–17

    Google Scholar 

  • Gordon GRJ, Baimoukhametova DV, Hewitt SA, Rajapaksha WRAKJS, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS (2009) Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    Article  CAS  PubMed  Google Scholar 

  • Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859

    Article  PubMed  PubMed Central  Google Scholar 

  • Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V (2004) Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes. J Neurosci Res 76:86–97

    Article  CAS  PubMed  Google Scholar 

  • Hulme SR, Jones OD, Raymond CR, Sah P, Abraham WC (2014) Mechanisms of heterosynaptic metaplasticity. Philos Trans R Soc Lond B Biol Sci 369:20130148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iacobas DA, Suadicani SO, Spray DC, Scemes E (2006) A stochastic two-dimensional model of intercellular Ca2+ wave spread in glia. Biophys J 90:24–41

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Othmer HG (2009) Spatiotemporal characteristics of calcium dynamics in astrocytes. Chaos 19

    Google Scholar 

  • Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  CAS  PubMed  Google Scholar 

  • Khakh BS (2009) ATP-gated P2X receptors on excitatory nerve terminals onto interneurons initiate a form of asynchronous glutamate release. Neuropharmacology 56:216–222

    Article  CAS  PubMed  Google Scholar 

  • Köles L, Leichsenring A, Rubini P, Illes P (2011) P2 receptor signaling in neurons and glial cells of the central nervous system. Adv Pharmacol 61, 441–493

    Google Scholar 

  • Kreft M, Stenovec M, Rupnik M, Grilc S, Kržan M, Potokar M, Pangršič T, Haydon PG, Zorec R (2004) Properties of Ca2+-dependent exocytosis in cultured astrocytes. Glia 46:437–445

    Article  PubMed  Google Scholar 

  • Kreft M, Potokar M, Stenovec M, Pangršič T, Zorec R (2009) Regulated exocytosis and vesicle trafficking in astrocytes. Ann N Y Acad Sci 1152:30–42

    Article  CAS  PubMed  Google Scholar 

  • Kukley M, Barden JA, Steinhäuser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    Article  CAS  PubMed  Google Scholar 

  • Lalo UV, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12

    Google Scholar 

  • Lê KT, Babinski K, Séguéla P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Chen S, Zeng S, Luo Q, Li P (2012) Modeling the contributions of Ca2+ flows to spontaneous Ca2+ oscillations and cortical spreading depression-triggered Ca2+ waves in astrocyte networks. PLoS ONE 7:1–12

    Google Scholar 

  • Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112:319–329

    Article  CAS  PubMed  Google Scholar 

  • Macdonald CL, Yu D, Buibas M, Silva GA (2008) Diffusion modeling of ATP signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves. Front Neuroeng 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Maienschein V, Marxen M, Volknandt W, Zemmermann H (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244

    Article  CAS  PubMed  Google Scholar 

  • Malarkey EB, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: Examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589:4271–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchaland J, Cali C, Voglmaier SM, Li H, Regazzi R, Edwards RH, Bezzi P (2008) Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28:9122–9132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffatt L, Hume RI (2007) Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating. J Gen Physiol 130:183–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4

    Google Scholar 

  • Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  • Oya M, Kitaguchi T, Yanagihara Y, Numano R, Kakeyama M, Ikematsu K, Tsuboi T (2013) Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochem Biophys Res Commun 438:145–151

    Article  CAS  PubMed  Google Scholar 

  • Pang ZP, Südhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 22:496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pangršič T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci U S A 97:8629–8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parpura V, Fang Y, Basarsky T, Jahn R, Haydon PG (1995) Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett 377:489–492

    Article  CAS  PubMed  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pougnet JT, Toulme E, Martinez A, Choquet D, Hosy E, Boué-Grabot E (2014) ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron 83:417–430

    Article  CAS  PubMed  Google Scholar 

  • Proctor WR, Dunwiddie TV (1987) Pre- and postsynaptic actions of adenosine in the in vitro rat hippocampus. Brain Res 426:187–190

    Article  CAS  PubMed  Google Scholar 

  • Rebola N, Rodrigues RJ, Lopes LV, Richardson PJ, Oliveira CR, Cunha RA (2005) Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133:79–83

    Article  CAS  PubMed  Google Scholar 

  • Robinson IM, Ranjan R, Schwarz TL (2002) Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418:336–340

    Article  CAS  PubMed  Google Scholar 

  • Rubio ME, Soto F (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21:641–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahlender DA, Savtchouk I, Volterra A (2014) What do we know about gliotransmitter release from astrocytes? Philos Trans R Soc Lond B Biol Sci 369:20130592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salter MW, Hicks JL (1995) ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci 15:2961–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA 105:5683–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scanziani M, Capogna M, Gähwiler BH, Thompson SM (1992) Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9:919–927

    Article  CAS  PubMed  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Jorgačevski J, Kreft M, Grubišić V, Stout RF, Potokar M, Parpura V, Zorec R (2014) Single-vesicle architecture of synaptobrevin2 in astrocytes. Nat Commun 5:3780

    Article  CAS  PubMed  Google Scholar 

  • Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stühmer W (1996) P2X4: An ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci USA 93:3684–3688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis M, Mantzaris NV (2006) Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 241:649–668

    Article  CAS  PubMed  Google Scholar 

  • Sudhof TC, Rothman JE (2009) Membrane fusion: Grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, Sudhof TC (2007) A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

    Article  CAS  PubMed  Google Scholar 

  • Venance L, Stella N, Glowinski J, Giaume C (1997) Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci 17:1981–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, Riganti L, Frassoni C, Zuccaro E, Danglot L, Wilhelm C, Galli T, Canossa M, Matteoli M (2012) TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 104:213–228

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signalling: An unexpected complexity. Nat Rev Neurosci 15:327–335

    Article  CAS  PubMed  Google Scholar 

  • Whitlock A, Burnstock G, Gibb AJ (2001) The single-channel properties of purinergic P2X ATP receptors in outside-out patches from rat hypothalamic paraventricular parvocells. Pflugers Arch Eur J Physiol 443:115–122

    Article  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004a) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441–9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul J-Y, Halassa M, Van Bockstaele E, Zorec R, Haydon PG (2004b) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu X, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anup Pillai or Suhita Nadkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pillai, A., Nadkarni, S. (2019). Purinergic Signaling at Tripartite Synapses. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_9

Download citation

Publish with us

Policies and ethics