Skip to main content

GECIquant: Semi-automated Detection and Quantification of Astrocyte Intracellular Ca2+ Signals Monitored with GCaMP6f

  • Chapter
  • First Online:
Computational Glioscience

Abstract

Astrocytes display diverse and frequent intracellular Ca2+ fluctuations that are separable by virtue of their location within the cells, their magnitude, and their duration. Recently, the study of astrocyte Ca2+ signaling has rapidly advanced by the availability of genetically encoded Ca2+ indicators (GECIs) such as GCaMP3 and GCaMP6. The systematic use of GECIs is beginning to reveal the rules for astrocyte engagement within neural circuits in brain slices and in vivo. However, the richness and high numbers of Ca2+ signals that have been observed necessitate their routine detection within the complex morphology of astrocytes. To this end, in this chapter, we describe the development and features of GECIquant software that permits the semi-automated detection and quantification of astrocyte Ca2+ signals. Biological insights afforded by the use of GECIs and GECIquant are also described.

Sharmila Venugopal and Rahul Srinivasan contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Araque A et al (2014) Gliotransmitters travel in time and space. Neuron 81:728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwell D et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo FA et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Bahney J, von Bartheld CS (2014) Validation of the isotropic fractionator: comparison with unbiased stereology and DNA extraction for quantification of glial cells. J Neurosci Methods 222:165–174

    Article  CAS  PubMed  Google Scholar 

  • Bernardinelli Y et al (2014) Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 24:1679–1688

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  CAS  PubMed  Google Scholar 

  • Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992

    Article  CAS  PubMed  Google Scholar 

  • Chen TW et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  CAS  PubMed  Google Scholar 

  • Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  CAS  PubMed  Google Scholar 

  • Di Castro MA et al (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284

    Article  CAS  PubMed  Google Scholar 

  • Filosa JA et al (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khakh BS, McCarthy KD (2015) Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7:a020404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Agulhon C, Schmidt E, Oheim M, Ropert N (2013) New tools for investigating astrocyte-to-neuron communication. Front Cell Neurosci 7:193

    PubMed  PubMed Central  Google Scholar 

  • Molotkov D, Zobova S, Arcas JM, Khiroug L (2013) Calcium-induced outgrowth of astrocytic peripheral processes requires actin binding by Profilin-1. Cell Calcium 53:338–348

    Article  CAS  PubMed  Google Scholar 

  • Morquette P et al (2015) An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci

    Google Scholar 

  • Nedergaard M, Verkhratsky A (2012) Artifact versus reality–how astrocytes contribute to synaptic events. Glia 60:1013–1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Panatier A et al (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798

    Article  CAS  PubMed  Google Scholar 

  • Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34:12738–12744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poskanzer KE, Yuste R (2011) Astrocytic regulation of cortical UP states. Proc Natl Acad Sci U S A 108:18453–18458

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridler T, Calvard S (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern SMC-8:630–632

    Google Scholar 

  • Sasaki T, Matsuki N, Ikegaya Y (2011) Action-potential modulation during axonal conduction. Science 331:599–601

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T et al (2014) Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices. J Physiol 592:2771–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelin J et al (2012) Fiji: an open-source platform for biological image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Schneider C, Rasband W, Eliceiri K (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13:759–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2012) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80

    Article  CAS  Google Scholar 

  • Shigetomi E, Jackson-Weaver O, Huckstepp RT, O’Dell TJ, Khakh BS (2013a) TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci 33:10143–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigetomi E et al (2013b) Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol 141:633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SJ (1992) Do astrocytes process neural information? Prog Brain Res 94:119–136

    Article  CAS  PubMed  Google Scholar 

  • Smith S (1994) Neural signalling. Neuromodulatory astrocytes. Curr Biol 4:807–810

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R et al (2015) Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and during startle responses in vivo. Nat Neurosci 18:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Shigetomi E, Looger LL, Khakh BS (2013) Genetically encoded calcium indicators and astrocyte calcium microdomains. Neuroscientist 19:274–291

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signalling: an unexpected complexity. Nat Rev Neurosci 15:327–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the NINDS (BSK, SV), NIMH (BSK), and CHDI Foundation (BSK) Awards.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharmila Venugopal , Rahul Srinivasan or Baljit S. Khakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venugopal, S., Srinivasan, R., Khakh, B.S. (2019). GECIquant: Semi-automated Detection and Quantification of Astrocyte Intracellular Ca2+ Signals Monitored with GCaMP6f. In: De Pittà, M., Berry, H. (eds) Computational Glioscience. Springer Series in Computational Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-00817-8_17

Download citation

Publish with us

Policies and ethics