Skip to main content

Quality Evaluation of 3D Printed Surfaces Based on HOG Features

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2018)

Abstract

The main purpose of the visual quality assessment of 3D prints is the detection of surface distortions which can be made using various approaches. Nevertheless, a reliable classification of 3D printed samples into low and high quality ones can be troublesome, especially assuming the unknown color of the filament. Such a classification can be efficiently conducted using the approach based on the Histogram of Oriented Gradients (HOG) proposed in this paper. Obtained results are very promising and allow proper classification for the most of the tested samples, especially for some of the most typical distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chauhan, V., Surgenor, B.: A comparative study of machine vision based methods for fault detection in an automated assembly machine. Procedia Manuf. 1, 416–428 (2015). https://doi.org/10.1016/j.promfg.2015.09.051

    Article  Google Scholar 

  2. Chauhan, V., Surgenor, B.: Fault detection and classification in automated assembly machines using machine vision. Int. J. Adv. Manuf. Technol. 90(9), 2491–2512 (2017). https://doi.org/10.1007/s00170-016-9581-5

    Article  Google Scholar 

  3. Cheng, Y., Jafari, M.A.: Vision-based online process control in manufacturing applications. IEEE Transa. Autom. Sci. Eng. 5(1), 140–153 (2008). https://doi.org/10.1109/TASE.2007.912058

    Article  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005. https://doi.org/10.1109/CVPR.2005.177

  5. Fang, T., Jafari, M.A., Bakhadyrov, I., Safari, A., Danforth, S., Langrana, N.: Online defect detection in layered manufacturing using process signature. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Diego, California, USA, vol. 5, pp. 4373–4378, October 1998. https://doi.org/10.1109/ICSMC.1998.727536

  6. Fastowicz, J., Okarma, K.: Texture based quality assessment of 3D prints for different lighting conditions. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 17–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46418-3_2

    Chapter  Google Scholar 

  7. Fastowicz, J., Okarma, K.: Entropy based surface quality assessment of 3D prints. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 404–413. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57261-1_40

    Chapter  Google Scholar 

  8. Gardner, M.R., et al.: In situ process monitoring in selective laser sintering using optical coherence tomography. Optical Engineering 57, 1–5 (2018). https://doi.org/10.1117/1.OE.57.4.041407

    Article  Google Scholar 

  9. Lane, B., Moylan, S., Whitenton, E.P., Ma, L.: Thermographic measurements of the commercial laser powder bed fusion process at NIST. Rapid Prototyp. J. 22(5), 778–787 (2016). https://doi.org/10.1108/RPJ-11-2015-0161

    Article  Google Scholar 

  10. Okarma, K., Fastowicz, J.: No-reference quality assessment of 3D prints based on the GLCM analysis. In: Proceedings of the 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 788–793 (2016). https://doi.org/10.1109/MMAR.2016.7575237

  11. Okarma, K., Fastowicz, J.: Quality assessment of 3D prints based on feature similarity metrics. In: Choraś, R.S. (ed.) IP&C 2016. AISC, vol. 525, pp. 104–111. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47274-4_12

    Chapter  Google Scholar 

  12. Okarma, K., Fastowicz, J., Tecław, M.: Application of structural similarity based metrics for quality assessment of 3D prints. In: Chmielewski, L.J., Datta, A., Kozera, R., Wojciechowski, K. (eds.) ICCVG 2016. LNCS, vol. 9972, pp. 244–252. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46418-3_22

    Chapter  Google Scholar 

  13. Straub, J.: Initial work on the characterization of additive manufacturing (3D printing) using software image analysis. Machines 3(2), 55–71 (2015). https://doi.org/10.3390/machines3020055

    Article  Google Scholar 

  14. Straub, J.: 3D printing cybersecurity: detecting and preventing attacks that seek to weaken a printed object by changing fill level. In: Proceedings of SPIE – Dimensional Optical Metrology and Inspection for Practical Applications VI, Anaheim, California, USA, vol. 10220, pp. 102200O-1–102200O-15, June 2017. https://doi.org/10.1117/12.2264575

  15. Straub, J.: An approach to detecting deliberately introduced defects and micro-defects in 3D printed objects. In: Proceedings of SPIE - Pattern Recognition and Tracking XXVII, Anaheim, California, USA, vol. 10203, pp. 102030L-1–102030L-14, June 2017. https://doi.org/10.1117/12.2264588

  16. Straub, J.: Identifying positioning-based attacks against 3D printed objects and the 3D printing process. In: Proceedings of SPIE - Pattern Recognition and Tracking XXVII, Anaheim, California, USA, vol. 10203, pp. 1020304-1–1020304-13, June 2017. https://doi.org/10.1117/12.2264671

  17. Straub, J.: Physical security and cyber security issues and human error prevention for 3D printed objects: detecting the use of an incorrect printing material. In: Proceedings of SPIE - Dimensional Optical Metrology and Inspection for Practical Applications VI, Anaheim, California, USA, vol. 10220, pp. 102200K-1-102200K–16, June 2017. https://doi.org/10.1117/12.2264578

  18. Szkilnyk, G., Hughes, K., Surgenor, B.: Vision based fault detection of automated assembly equipment. In: Proceedings of the ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B, Washington, DC, USA, vol. 3, pp. 691–697, August 2011. https://doi.org/10.1115/DETC2011-48493

  19. Tourloukis, G., Stoyanov, S., Tilford, T., Bailey, C.: Data driven approach to quality assessment of 3D printed electronic products. In: Proceedings of the 38th International Spring Seminar on Electronics Technology (ISSE), Eger, Hungary, pp. 300–305, May 2015. https://doi.org/10.1109/ISSE.2015.7248010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Okarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lech, P., Fastowicz, J., Okarma, K. (2018). Quality Evaluation of 3D Printed Surfaces Based on HOG Features. In: Chmielewski, L., Kozera, R., Orłowski, A., Wojciechowski, K., Bruckstein, A., Petkov, N. (eds) Computer Vision and Graphics. ICCVG 2018. Lecture Notes in Computer Science(), vol 11114. Springer, Cham. https://doi.org/10.1007/978-3-030-00692-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00692-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00691-4

  • Online ISBN: 978-3-030-00692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics