Skip to main content

Membranes by the Numbers

  • Chapter
  • First Online:
Physics of Biological Membranes

Abstract

Many of the most important processes in cells take place on and across membranes. With the rise of an impressive array of powerful quantitative methods for characterizing these membranes, it is an opportune time to reflect on the structure and function of membranes from the point of view of biological numeracy. To that end, in this chapter, I review the quantitative parameters that characterize the mechanical, electrical, and transport properties of membranes and carry out a number of corresponding order-of-magnitude estimates that help us understand the values of those parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buehler LK (2016) Cell membranes. Garland Press, New York

    Google Scholar 

  2. Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753

    Article  CAS  PubMed  Google Scholar 

  3. Mahajan S (2014) The art of insight in science and engineering: mastering complexity. The MIT Press, Cambridge

    Google Scholar 

  4. Phillips R, Kondev J, Theriot J, Garcia HG (2013) Physical biology of the cell, 2nd edn. Garland Science, New York. Illustrated by N. Orme

    Google Scholar 

  5. Tanford C (2004) Ben Franklin stilled the waves. Oxford University Press, New York

    Google Scholar 

  6. Pockels A (1891) Surface tension. Nature 43:437–439

    Google Scholar 

  7. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II. Liquids. J Am Chem Soc 39:1848–1906

    Article  CAS  Google Scholar 

  8. Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nagle JF, Zeidel ML, Mathai JC, Tristram-Nagle S (2008) Structural determinants of water permeability through the lipid membrane. J Gen Physiol 131:69–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Boal D (2002) Mechanics of the cell, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  12. Harroun TA, Weiss TM, Yang L, Huang HW (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76(6):3176–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nielsen C, Andersen OS (2000) Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys J 79(5):2583–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Phillips R, Ursell T, Wiggins P, Sens P (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459(7245):379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neupert W (2012) SnapShot: mitochondrial architecture. Cell 149(3):722–722.e1

    Article  PubMed  CAS  Google Scholar 

  16. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126(3): 435–439

    Article  CAS  PubMed  Google Scholar 

  17. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143(5):774–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  CAS  PubMed  Google Scholar 

  19. Milo R, Phillips R (2016) Cell biology by the numbers. Garland Press, New York

    Google Scholar 

  20. Dupuy AD, Engelman DM (2008) Protein area occupancy at the center of the red blood cell membrane. Proc Natl Acad Sci U S A 105(8):2848–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalvodova L, Sampaio JL, Cordo S, Ejsing CS, Shevchenko A, Simons K (2009) The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J Virol 83(16):7996–8003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H, Simons K, Shevchenko A (2011) Membrane lipidome of an epithelial cell line. Proc Natl Acad Sci U S A 108(5):1903–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, Cheng TY, Armand JW, Kim K, Shamputa IC, McConnell MJ, Debono CA, Behar SM, Minnaard AJ, Murray M, Barry CE, Matsunaga I, Moody DB (2011) A comparative lipidomics platform for chemotaxonomic analysis of mycobacterium tuberculosis. Chem Biol 18:1537–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, Shevchenko A (2012) Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 8:600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Klose C, Surma MA, Gerl MJ, Meyenhofer F, Shevchenko A, Simons K (2012) Flexibility of a eukaryotic lipidome–insights from yeast lipidomics. PLoS One 7(4):e35063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klose C, Surma MA, Simons K (2013) Organellar lipidomics–background and perspectives. Curr Opin Cell Biol 25(4):406–413

    Article  CAS  PubMed  Google Scholar 

  29. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Sunderland

    Google Scholar 

  30. Levental KR, Levental I (2015) Giant plasma membrane vesicles: models for understanding membrane organization. Curr Top Membr 75:25–57

    Article  PubMed  Google Scholar 

  31. Evans E, Rawicz W, Smith BA (2013) Back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 161:591–611

    Article  CAS  PubMed  Google Scholar 

  32. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagle JF, Jablin MS, Tristram-Nagle S, Akabori A (2015) What are the true values of the bending modulus of simple lipid bilayers? Chem Phys Lipids 185:3–10

    Article  CAS  PubMed  Google Scholar 

  34. Song J, Waugh RE (1993) Bending rigidity of SOPC membranes containing cholesterol. Biophys J 64:1967–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hochmuth FM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70(1):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18(17):6681–6692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olbrich KC, Rawicz W, Needham D, Evans E (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J 79:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Upadhyaya A, Sheetz MP (2004) Tension in tubulovesicular networks of Golgi and endoplasmic reticulum membranes. Biophys J 86(5):2923–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peukes J, Betz T (2014) Direct measurement of the cortical tension during the growth of membrane blebs. Biophys J 107(8):1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sens P, Plastino J (2015) Membrane tension and cytoskeleton organization in cell motility. J Phys Condens Matter 27(27):273103

    Article  PubMed  CAS  Google Scholar 

  41. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  42. Manning GS (1968) Binary diffusion and bulk flow through a potential-energy profile: a kinetic basis for the thermodynamic equations of flow through membranes. J Chem Phys 49: 2668–2675

    Article  CAS  Google Scholar 

  43. Robinett RW (2015) Dimensional analysis as the other language of physics. Am J Phys 83: 353–361

    Article  Google Scholar 

  44. Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol 68(2):127–135

    Article  CAS  PubMed  Google Scholar 

  45. Stein WD (1990) Channels, carriers and pumps. An introduction to membrane transport. Academic, Cambridge

    Google Scholar 

  46. Schlessinger J, Axelrod D, Koppel DE, Webb WW, Elson EL (1977) Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science 195(4275):307–309

    Article  CAS  PubMed  Google Scholar 

  47. Alecio MR, Golan DE, Veatch WR, Rando RR (1982) Use of a fluorescent cholesterol derivative to measure lateral mobility of cholesterol in membranes. Proc Natl Acad Sci U S A 79(17):5171–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gaede HC, Gawrisch K (2003) Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. Biophys J 85(3):1734–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Doeven MK, Folgering JH, Krasnikov V, Geertsma ER, van den Bogaart G, Poolman B (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88(2):1134–1142

    Article  CAS  PubMed  Google Scholar 

  50. Nenninger A, Mastroianni G, Robson A, Lenn T, Xue Q, Leake MC, Mullineaux CW (2014) Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli. Mol Microbiol 92(5):1142–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW (1977) Lateral diffusion in planar lipid bilayers. Science 195(4275):305–306

    Article  CAS  PubMed  Google Scholar 

  52. Saffman PG, Delbruck M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci U S A 72(8):3111–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci U S A 103(7):2098–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B (2009) Lateral diffusion of membrane proteins. J Am Chem Soc 131(35):12650–12656

    Article  CAS  PubMed  Google Scholar 

  55. Kumar M, Mommer MS, Sourjik V (2010) Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. Biophys J 98(4):552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chow D, Guo L, Gai F, Goulian M (2012) Fluorescence correlation spectroscopy measurements of the membrane protein TetA in Escherichia coli suggest rapid diffusion at short length scales. PLoS One 7(10):e48600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mika JT, Schavemaker PE, Krasnikov V, Poolman B (2014) Impact of osmotic stress on protein diffusion in Lactococcus lactis. Mol Microbiol 94(4):857–870

    Article  CAS  PubMed  Google Scholar 

  58. Hanai T, Haydon DA, Taylor J (1965) The variation of capacitance and conductance of bimolecular lipid membranes with area. J Theor Biol 9:433–443

    Article  CAS  PubMed  Google Scholar 

  59. Vorobyov I, Olson TE, Kim JH, Koeppe RE 2nd, Andersen OS, Allen TW (2014) Ion-induced defect permeation of lipid membranes. Biophys J 106(3):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19(10):1356–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fricke H (1925) The electric capacity of suspensions with special reference to blood. J Gen Physiol 9:137–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Curtis HJ, Cole KS (1938) Transverse electric impedance of the squid giant axon. J Gen Physiol 21:757–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Almers W (1978) Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol 82:97–190

    Google Scholar 

  64. Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L (2010) Prediction of the human membrane proteome. Proteomics 10(6):1141–1149

    Article  CAS  PubMed  Google Scholar 

  65. Li GW, Burkhardt D, Gross C, Weissman JS (2014) Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157(3):624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B, Callipo L, Knoops K, Bauer M, Aebersold R, Heinemann M (2016) The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol 34(1):104–110

    Article  CAS  PubMed  Google Scholar 

  67. Li M, Hazelbauer GL (2004) Cellular stoichiometry of the components of the chemotaxis signaling complex. J Bacteriol 186(12):3687–3694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bitbol AF, Wingreen NS (2015) Fundamental constraints on the abundances of chemotaxis proteins. Biophys J 108(5):1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bialecka-Fornal M, Lee HJ, Phillips R (2015) The rate of osmotic downshock determines the survival probability of bacterial mechanosensitive channel mutants. J Bacteriol 197(1): 231–237

    Article  PubMed  CAS  Google Scholar 

  70. Louhivuori M, Jelger Risselada H, van der Giessen E, Marrink SJ (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci U S A 107: 19856–19860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andersen OS (1983) Ion movement through gramicidin a channels single-channel measurements at very high potentials. Biophys J 41:119–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R (2005) Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15(2):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Garcia HG, Sanchez A, Kuhlman T, Kondev J, Phillips R (2010) Transcription by the numbers redux: experiments and calculations that surprise. Trends Cell Biol 20:723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Phillips R, Milo R (2009) A feeling for the numbers in biology. Proc Natl Acad Sci U S A 106(51):21465–21471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moran U, Phillips R, Milo R (2010) SnapShot: key numbers in biology. Cell 141(7): 1262–1262.e1

    Article  PubMed  Google Scholar 

  76. Flamholz A, Phillips R, Milo R (2014) The quantified cell. Mol Biol Cell 25(22):3497–3500

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shamir M, Bar-On Y, Phillips R, Milo R (2016) SnapShot: timescales in cell biology. Cell 164(6):1302–1302.e1

    Article  PubMed  CAS  Google Scholar 

  78. Phillips R (2015) Theory in biology: Figure 1 or Figure 7? Trends Cell Biol 25(12):723–729

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bialek W (2015) Perspectives on theory at the interface of physics and biology. ArXiv: 1512.08954

    Google Scholar 

  80. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13

    Article  CAS  Google Scholar 

  81. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L, Tabin CJ (2011) On the growth and form of the gut. Nature 476(7358):57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shyer AE, Tallinen T, Nerurkar NL, Wei Z, Gil ES, Kaplan DL, Tabin CJ, Mahadevan L (2013) Villification: how the gut gets its villi. Science 342(6155):212–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dacks JB, Peden AA, Field MC (2009) Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 41(2):330–340

    Article  CAS  PubMed  Google Scholar 

  84. Field MC, Dacks JB (2009) First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 21(1):4–13

    Article  CAS  PubMed  Google Scholar 

  85. Richardson E, Zerr K, Tsaousis A, Dorrell RG, Dacks JB (2015) Evolutionary cell biology: functional insight from “endless forms most beautiful”. Mol Biol Cell 26:4532–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

One of the best parts of being a member of the scientific enterprise is all the smart and interesting people we get to interact with. In preparing this chapter I sent out a survey to many experts in membrane biology and biophysics and was overwhelmed with the thoughtful responses that I received from many colleagues. I am grateful to Olaf Andersen, Patricia Bassereau, Joel Dacks, Markus Deserno, Evan Evans, Ben Freund, Jay Groves, Christoph Haselwandter, Liz Haswell, KC Huang, Ron Kaback, Heun Jin Lee, Mike Lynch, Bill Klug, Jane Kondev, Ron Milo, Uri Moran, John Nagle, Phil Nelson, Bert Poolman, Tom Powers, Doug Rees, James Saenz, Pierre Sens, Victor Sourjik, Stephanie Tristram-Nagle, and Tristan Ursell for useful discussions. I am especially grateful to Olaf Andersen, Markus Deserno, Christoph Haselwandter, James Saenz, Pierre Sens, and Tristan Ursell who have been patient and persistent in advancing my membrane education, though obviously all shortcomings in this chapter are due to my failure to absorb that education and are no fault of their own. I am privileged to be entrusted by the National Science Foundation, the National Institutes of Health, The California Institute of Technology and La Fondation Pierre Gilles de Gennes with the funds that make the kind of work described here possible. Specifically I am grateful to the NIH for support through award numbers DP1 OD000217 (Director’s Pioneer Award), R01 GM085286, and 1R35 GM118043-01 (MIRA). I am also grateful to the Kavli Institute for Theoretical Physics where much of this chapter was written. More generally, this article is part of an adventure that I have undertaken with Ron Milo and Nigel Orme (our illustrator) and generously funded by the Donna and Benjamin Rosen Bioengineering Center at Caltech. Finally and sadly, since the completion of this chapter, my friend and collaborator Bill Klug was brutally murdered in his office by a former graduate student. I had asked Bill to join me in the writing of this chapter, but he was too busy during this summer and instead of having the happy presence of his name as a co-author I instead have the solemn and unhappy duty to dedicate this short piece to him, kind and intellectually deep, above all a family man, he will be deeply missed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phillips, R. (2018). Membranes by the Numbers. In: Bassereau, P., Sens, P. (eds) Physics of Biological Membranes. Springer, Cham. https://doi.org/10.1007/978-3-030-00630-3_3

Download citation

Publish with us

Policies and ethics