Skip to main content

Genetic Diversity of Pineapple

  • Chapter
  • First Online:
Genetics and Genomics of Pineapple

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 22))

  • 927 Accesses

Abstract

All pineapple germplasm are regrouped into one genus Ananas Miller with two species: the self-incompatible diploid A. comosus (L.) Merr. and the self-fertile tetraploid A. macrodontes Morren. There are five botanical varieties, comosus, microstachys, parguazensis, erectifolius, and bracteatus, found in A. comosus. Pineapple germplasm characterization and genetics studies indicate that A. comosus is widely considered to be heterozygous, and consequently there is much diversity in plant and fruit characteristics between cultivars. Pineapple cultivars are normally diploids but exhibit a wide variety of diverse and useful traits. The genetic diversity in pineapple was driven by a system of outcrossing and a high frequency of somaclonal variation. The five cultivars for commercial production include Perola, Queen, Abacaxi, Red Spanish, and Cayenne. The important traits in cultivated pineapples are usually related to yield, fruit size and quality, or production efficiency. The genetic divergence between A. macrodontes and A. comosus and the genetic differentiation among the botanical varieties of A. comosus were explored by using biochemical and molecular marker techniques. DNA-based molecular markers, such as RAPD, RFLP, AFLP, SSR, and SNP, have been widely utilized in the detection and the evaluation of genetic diversity in pineapple. The results from SSR and SNP analysis suggested that there was abundant genetic variation within existing pineapple germplasm for commercial cultivars. The increasing use of SNPs as the markers will facilitate accurate identification and further studies of the genetic diversity in pineapple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aradhya M, Zee F, Manshardt RM (1994) Isozyme variation in cultivated and wild pineapple. Euphytica 79:87–99

    Article  CAS  Google Scholar 

  • Botella JR, Smith M (2008) Genomics of pineapple, crowning the king of tropical fruits. In: Moore PH, Delmer D, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 441–451

    Chapter  Google Scholar 

  • Brat P, Hoang LNT, Soler A, Reynes M, Brillouet JM (2004) Physicochemical characterization of a new pineapple hybrid (FLHORAN41 cv.). J Agr Food Chem 52(20):6170–6177

    Article  CAS  Google Scholar 

  • Brown G, Gilmartin A (1986) Chromosomes of the Bromeliaceae. Selbyana 9:88–93

    Google Scholar 

  • Brown GK, Palací CA, Luther HE (1997) Chromosome numbers in Bromeliaceae. Selbyana 18:85–88

    Google Scholar 

  • Clement CR, Cristo-Araujo Md, Coppens d’Eeckenbrugge G, Pereira AA, Picanco-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106

    Article  Google Scholar 

  • Coppens d’Eeckenbrugge C, Duval MF (2009) The domestication of pineapple: context and hypotheses. Pineapple News 16:15–27

    Google Scholar 

  • Coppens d’ Eeckenbrugge G, Govaerts R (2015) Synonymies in Ananas (Bromeliaceae). Phytotaxa 239(3):273–279

    Article  Google Scholar 

  • Coppens d’Eeckenbrugge G, Leal F (2003) Morphology, anatomy and taxonomy. In: Bartholomew DP, Paull RE, Rohrbach CK (eds) The pineapple: botany, production and uses. CABI, Wallingford, pp 13–32

    Chapter  Google Scholar 

  • Coppens d’Eeckenbrugge G, Leal F, Duval MF (1997) Germplasm resources of pineapple. Hort Rev 21:133–175

    Google Scholar 

  • De Wald MG, Moore GA, Sherman WB (1992) Isozymes in Ananas (pineapple): genetics and usefulness in taxonomy. J Am Soc Hortic Sci 117:491–496

    Google Scholar 

  • Duval MF, Coppens d’Eeckenbrugge G (1993) Genetic variability in the genus Ananas. Acta Hortic 334:27–32

    Article  Google Scholar 

  • Duval MF, Noyer JL, Perrier X, Coppens d’Eeckenbrugge G, Hamon P (2001) Molecular diversity in pineapple assessed by RFLP markers. Theor Appl Genet 102:83–90

    Article  CAS  Google Scholar 

  • Feng S, Tong H, Chen Y et al (2013) Development of pineapple microsatellite markers and germplasm genetic diversity analysis. Biomed Res Int 2013:11

    Google Scholar 

  • Ferreira F, Cabral J (1993) Pineapple germplasm in Brazil. Acta Hortic 334:23–26

    Article  Google Scholar 

  • Johannessen GA, Kerns KR (1964) The variety development program as of mid-1964. PRI Report 111

    Google Scholar 

  • Kato CY, Nagai C, Moore PH, Zee F, Kim MS, Steiger DL, Ming R (2004) Intra-specific DNA polymorphism in pineapple (Ananas comosus (L.) Merr.) assessed by AFLP markers. Genet Resour Crop Evol 51:815–825

    Article  CAS  Google Scholar 

  • Loison-Cabot C (1992) Origin, phylogeny and evolution of pineapple species. Fruits 47:25–32

    Google Scholar 

  • Marchant C (1967) Chromosome evolution in the Bromeliaceae. Kew Bull 21:161–168

    Article  Google Scholar 

  • Paz EY, Gil K, Rebolledo L, Rebolledo A, Uriza D, Martínez O, Isidrón M, Simpson J (2005) AFLP characterization of the Mexican pineapple germplasm collection. J Am Soc Hort Sci 130:575–579

    CAS  Google Scholar 

  • Paz EY et al (2012) Genetic diversity of Cuban pineapple germplasm assessed by AFLP markers. Crop Breed Appl Biotechnol 12(2):104–110

    Article  CAS  Google Scholar 

  • Popluechai S, Onto S, Eungwanichayapant PD (2007) Relationships between some Thai cultivars of pineapple (Ananas comosus) revealed by RAPD analysis. Songklanakarin J Sci Technol 29:1491–1497

    Google Scholar 

  • Py C, Lacoeuilhe J, Teisson C (1987) The pineapple: cultivation and uses, vol 568. G.P. Maisonneuve et Larose, Paris

    Google Scholar 

  • Ramsaroop RES, Saulo AA (2007) Comparative consumer and physicochemical analysis of Del Monte Hawaii Gold and Smooth Cayenne pineapple cultivars. J Food Qual 30:135–159

    Article  CAS  Google Scholar 

  • Rodrígueza D, Grajal-Martínb MJ, Isidróna M, Petit b S, Hormazac JI (2013) Polymorphic microsatellite markers in pineapple (Ananas comosus (L.) Merrill). Sci Hortic 156:127–130

    Article  Google Scholar 

  • Ruas PM, Ruas CF, Fairbanks DJ, Andersen WR, Cabral JS (1995) Genetic relationship among four varieties of pineapple, Ananas comosus, revealed by random amplified polymorphic DNA (RAPD) analysis. Braz J Genet 18:413–416

    CAS  Google Scholar 

  • Sanewski GM (2011) Genetic diversity in pineapple. Chronica Horticulturae 51:9–13

    Google Scholar 

  • Scherer RF, Olkoski D, Souza FVD, Nodari RO, Guerra MP (2015) Gigante de Tarauacá: A triploid pineapple from Brazilian Amazonia. Sci Hortic 181:1–3

    Article  Google Scholar 

  • Shoda M, Urasaki N, Sakiyama S et al (2012) DNA profiling of pineapple cultivars in Japan discriminated by SSR markers. Breed Sci 62:352–359

    Article  CAS  Google Scholar 

  • Smith LB, Downs RJ (1979) Bromelioidees (Bromeliaceae). Flora Neotrópica 14:2142

    Google Scholar 

  • Sripaoraya S (2009) Pineapple hybridization and selection in Thailand. Acta Hortic 822:57–62

    Article  Google Scholar 

  • Sun WS, Liu SH, Lu XH, Wu QS, Sun GM (2016) Comparative analysis of variety characteristics of Tainong series pineapple. Chin J Trop Crops 37:2050–2055

    CAS  Google Scholar 

  • Vanijajiva O (2012) Assessment of genetic diversity and relationships in pineapple cultivars from Thailand using ISSR marker. J Agr Technol 8(5):1829–1838

    CAS  Google Scholar 

  • Wang JS, He JH, Chen HR, Chen YY, Qiao F (2017) Genetic diversity in various accessions of pineapple [ Ananas comosus (L.) Merr.] using ISSR and SSR markers. Biochem Genet 55:347. https://doi.org/10.1007/s10528-017-9803-z

    Article  CAS  PubMed  Google Scholar 

  • Wee YC, Thongtham MLC (1991) Ananas comosus (L.) Merr. In: Verheij EWM, Coronel RE (eds) Plant Resources of South-East Asia No. 2 Edible fruits and nuts. Pudoc, Wageningen, pp 66–71

    Google Scholar 

  • Wei CB, Liu SH, Lu XH, Wu QS, Sun GM (2016) Aroma volatile compounds diversity analysis of pineapple fruits. Chin J Trop Crops 37:418–426

    Google Scholar 

  • Wells AH, Agcaoili F, Taguibao H, Valenzuela A (1928) Composition of philippine pineapples. Philippine J Sci 36(2):157–185

    CAS  Google Scholar 

  • Zhang J, Liu J, Ming R (2014) Genomic analyses of the CAM plant pineapple. J Exp Bot 65(13):3395–3404

    Article  Google Scholar 

  • Zhou L, Matsumoto T, Tan HW, Meinhardt LW, Mischke S, Wang B, Zhang D (2015) Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm. Hortic Res 2:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, H., Qin, Y. (2018). Genetic Diversity of Pineapple. In: Ming, R. (eds) Genetics and Genomics of Pineapple. Plant Genetics and Genomics: Crops and Models, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-00614-3_4

Download citation

Publish with us

Policies and ethics