Skip to main content

Robust Image Corner Detection Based on Maximum Point-to-Chord Distance

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

  • 2469 Accesses

Abstract

This paper first analysed the state-of-the-art corner detection algorithms and then proposed a novel corner detection approach based on a maximum point-to-chord distance. The proposed corner detector consists of three steps: First, several curves of original image is extracted using Canny edge detector. Second, a method of maximum point-to-chord distance is used in each curve to get the initial corner points. Third, non-maximum suppression and threshold are used to remove corner points with low curvature and get the final result. Different from the CPDA (chord-to-point distance accumulation) corner detector, our proposed detector neither need to accumulate each distance from a moving chord, nor need to computer the accumulation of each point in a curve, therefore achieves better speed while keeping the good average repeatability and accuracy. Compared with the existing methods, the proposed detector attains better performance on average repeatability and localization error under affine transforms, JPEG compression and Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, J., Wu, S.: Multi-image matching for object recognition. IET Comput. Vis. 12(3), 350–356 (2018)

    Article  Google Scholar 

  2. Yan, Y.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cognit. Comput. 10(1), 94–104 (2018)

    Article  Google Scholar 

  3. Zhou, Y.: Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval. Cognit. Comput. 8(5), 877–889 (2016)

    Article  Google Scholar 

  4. Bi, Y.X., Wei, S.M.: 3D reconstruction of high-speed moving targets based on HRR measurements. IET Radar Sonar Navig. 11(5), 778–787 (2017)

    Article  Google Scholar 

  5. Ren, J.: Real-time modeling of 3-D soccer ball trajectories from multiple fixed cameras. IEEE Trans. Circuits Syst. Video Technol. 18(3), 350–362 (2008)

    Article  Google Scholar 

  6. Ren, J.: Tracking the soccer ball using multiple fixed cameras. Comput. Vis. Image Underst. 113(5), 633–642 (2009)

    Article  Google Scholar 

  7. Ren, J.: Multi-camera video surveillance for real-time analysis and reconstruction of soccer games. Mach. Vis. Appl. 21(6), 855–863 (2010)

    Article  Google Scholar 

  8. Han, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2015)

    Article  Google Scholar 

  9. Liu, Q.: Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset. J. Electron. Imaging 26(6), 025–063 (2017)

    Google Scholar 

  10. Wang, Z.: A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos. Neuro Comput. 287, 68–83 (2018)

    Google Scholar 

  11. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of Eighth International Conference on Computer Vision, pp. 525–531 (2001)

    Google Scholar 

  12. Moravec, H. P.: Towards automatic visual obstacle avoidance. In: Proceedings of 5th International Joint Conference on Artificial Intelligence, p. 584 (1977)

    Google Scholar 

  13. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Alvey Vision Conference, University of Manchester, pp. 147–151 (1988)

    Google Scholar 

  14. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2(60), 91–110 (2004)

    Article  Google Scholar 

  15. Bay, H., Ess, A.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  16. Leutenegger, S., Chli, M., Siegwart, R. Y.: BRISK: binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV), pp. 6–13 (2011)

    Google Scholar 

  17. Alcantarilla, P. F., Bartoli, A., Davison, A. J.: Kaze features. In: Proceedings of European Conference on Pattern Recognition, (ECCV), pp. 214–227 (2012)

    Chapter  Google Scholar 

  18. Ramakrishnan, N., Wu, M.Q., Lam, S.K.: Enhanced low-complexity pruning for corner detection. J. Real-Time Image Proc. 1(1), 197–213 (2016)

    Article  Google Scholar 

  19. Wang, Z. C., Li, R.: Adaptive Harris corner detection algorithm based on iterative threshold. Modern Phys. Lett. B 31(15) (2017)

    Article  MathSciNet  Google Scholar 

  20. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  21. Kitchen, L., Rosenfeld, A.: Gray-level corner detection. Pattern Recogn. Lett. 1(2), 95–102 (1982)

    Article  Google Scholar 

  22. Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)

    Article  Google Scholar 

  23. Mokhtarian, F., Mohanna, F.: Enhancing the curvature scale space corner detector. In: Proceedings of Scandinavian Conference on Image Analysis, pp. 145–152 (2001)

    Google Scholar 

  24. He, X.C., Yung, N.H.C.: Corner detector based on global and local curvature properties. Opt. Eng. 47(5), 1–12 (2008)

    Google Scholar 

  25. Awrangjeb, M., Lu, G.: Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Trans. Multimedia 10(6), 1059–1072 (2008)

    Article  Google Scholar 

  26. Zhang, W.C., Shui, P.L.: Contour-based corner detection via angle difference of principal directions of anisotropic Gaussian directional derivatives. Pattern Recognit. 48(9), 2785–2797 (2015)

    Article  Google Scholar 

  27. Lin, X.Y., Zhu, C., Zhang, Q., et al.: Efficient and robust corner detectors based on second-order difference of contour. IEEE Signal Process. Lett. 24(9), 1393–1397 (2017)

    Article  Google Scholar 

  28. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. IJCV 37(2), 151–172 (2000)

    Article  Google Scholar 

  29. The Image Database. http://figment.csee.usf.edu/edge/roc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yarui He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Li, Y., Zhang, W. (2018). Robust Image Corner Detection Based on Maximum Point-to-Chord Distance. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics