Skip to main content

3-D Gabor Convolutional Neural Network for Damage Mapping from Post-earthquake High Resolution Images

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

Abstract

Post-earthquake high resolution (HR) remote sensing image classification is crucial for disaster assessment and emergency rescue. 3-D convolutional neural networks (3-D CNNs) exhibit promising performance in remote sensing image classification. However, 3-D CNNs lack the theoretical underpinnings to perform multiresolution approximation for filter learning in view of the scale variance of natural objects. Gabor filtering can effectively extract multiresolution spatial information including edges and textures, which have a potential to reinforce the robustness of learned features in 3-D CNNs against the orientation and scale changes. In this paper, we propose a combined 3-D convolutional neural network and Gabor filters (GNN) method for post-earthquake HR image classification. Instead of choosing a single scale, GNN extends the spatial information to several scales by Gabor filters to take advantage of correlations among multiple scales for damage mapping. The experimental results show that GNN can reflect the multiscale information of complex scenes, obtain good classification results for mapping post-earthquake damage using HR remote sensing images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Wu, L.: Geological disaster recognition on optical remote sensing images using deep learning. Proc. Comput. Sci. 91, 566–575 (2016). https://doi.org/10.1016/j.procs.2016.07.144

    Article  Google Scholar 

  2. Gencer, E.A.: Natural disasters, urban vulnerability, and risk management: a theoretical overview. In: Gencer, E.A. (ed.) The Interplay between Urban Development, Vulnerability, and Risk Management: A Case Study of the Istanbul Metropolitan Area, pp. 7–43. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-29470-9_2

    Chapter  Google Scholar 

  3. Geiß, C., Aravena Pelizari, P., Marconcini, M., et al.: Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques. ISPRS J. Photogramm. Remote Sens. 104, 175–188 (2015). https://doi.org/10.1016/j.isprsjprs.2014.07.016

    Article  Google Scholar 

  4. Cooner, A., Shao, Y., Campbell, J.: Detection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquake. Remote Sens. 8(10), 868 (2016). https://doi.org/10.3390/rs8100868

    Article  Google Scholar 

  5. Béjarpizarro, M., Notti, D., Mateos, R.M., et al.: Mapping vulnerable urban areas affected by slow-moving landslides using sentinel-1 InSAR data. Remote Sens. 9(9), 876 (2017). https://doi.org/10.3390/rs9090876

    Article  Google Scholar 

  6. Yan, Y., Ren, J., Sun, G., et al.: Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 79, 65–78 (2018). https://doi.org/10.1016/j.patcog.2018.02.004

    Article  Google Scholar 

  7. Cheng, G., Han, J., Guo, L., et al.: Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 53(8), 4238–4249 (2015). https://doi.org/10.1109/TGRS.2015.2393857

    Article  Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  9. Zhao, W., Du, S.: Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113, 155–165 (2016). https://doi.org/10.1016/j.isprsjprs.2016.01.004

    Article  Google Scholar 

  10. Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2016). https://doi.org/10.1016/j.neucom.2016.09.010

    Article  Google Scholar 

  11. Bouvrie, J.: Notes on Convolutional Neural Networks. Neural Nets (2006)

    Google Scholar 

  12. Liu, F., Lin, G., Shen, C.: CRF learning with CNN features for image segmentation. Pattern Recogn. 48(10), 2983–2992 (2015). https://doi.org/10.1016/j.patcog.2015.04.019

    Article  Google Scholar 

  13. Sun, G., Ma, P., Ren, J., et al.: A stability constrained adaptive alpha for gravitational search algorithm. Knowl. Based Syst. 139, 200–213 (2018). https://doi.org/10.1016/j.knosys.2017.10.018

    Article  Google Scholar 

  14. Zhang, A., Sun, G., Ren, J., et al.: A dynamic neighborhood learning-based gravitational search algorithm. IEEE Trans. Cybern. 48(1), 436–447 (2018). https://doi.org/10.1109/TCYB.2016.2641986

    Article  Google Scholar 

  15. Sun, G., Hao, Y., Rong, J., et al.: Combined deep learning and multiscale segmentation for rapid high resolution damage mapping. In: IEEE International Conferences (CPSCom, GreenCom, iThings, SmartData), pp. 1101–1105 (2017). https://doi.org/10.1109/ithings-greencom-cpscom-smartdata.2017.238

  16. Shi, C., Pun, C.-M.: 3D multi-resolution wavelet convolutional neural networks for hyperspectral image classification. Inf. Sci. 420, 49–65 (2017). https://doi.org/10.1016/j.ins.2017.08.051

    Article  Google Scholar 

  17. Luan, S., Chen, C., Zhang, B., et al.: Gabor convolutional networks. IEEE Trans. Image Process. (2018). https://doi.org/10.1109/tip.2018.2835143

    Article  MathSciNet  Google Scholar 

  18. Li, J., Wang, T., Zhou, Y., et al.: Using Gabor filter in 3D convolutional neural networks for human action recognition. In: 2017 36th Chinese Control Conference (CCC), 26–28 July 2017, pp. 11139–11144 (2017)

    Google Scholar 

  19. Bhagavathy, S., Manjunath, B.S.: Modeling and detection of geospatial objects using texture motifs. IEEE Trans. Geosci. Remote Sens. 44(12), 3706–3715 (2006). https://doi.org/10.1109/TGRS.2006.881741

    Article  Google Scholar 

  20. Yuan, J., Wang, D., Li, R.: Remote sensing image segmentation by combining spectral and texture features. IEEE Trans. Geosci. Remote Sens. 52(1), 16–24 (2014). https://doi.org/10.1109/TGRS.2012.2234755

    Article  Google Scholar 

  21. Gu, J., Wang, Z., Kuen, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. (2017). https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  22. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/bf00994018

    Article  MATH  Google Scholar 

  23. Benz, U.C., Hofmann, P., Willhauck, G., et al.: Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 58(3–4), 239–258 (2004). https://doi.org/10.1016/j.isprsjprs.2003.10.002

    Article  Google Scholar 

  24. Han, J., Zhang, D., Cheng, G., Guo, L., Ren, J.: Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 53(6), 3325–3337 (2015). https://doi.org/10.1109/TGRS.2014.2374218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genyun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, Y. et al. (2018). 3-D Gabor Convolutional Neural Network for Damage Mapping from Post-earthquake High Resolution Images. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics