Skip to main content

Cross-Modal and Cognitive Processes in Sound Localization

  • Chapter
  • First Online:
The Technology of Binaural Understanding

Abstract

To perceptually situate a sound source in the context of its surrounding environment, a listener must integrate two spatial estimates, (1), the location, relative to the listener’s head, of the auditory event associated with the sound-source and, (2), the location of the listener’s head relative to the environment. This chapter introduces the general background of auditory localization as a multi-sensory process and reviews studies of cross-modal interactions with auditory localization for stationary/moving sound sources and listeners. Included are relevant results from recent experiments at Arizona State University’s Spatial-Hearing and Auditory Computation and Neurophysiology Laboratories. Finally, a conceptual model of the integrated multisensory/multi-system processes is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kemar®is an often-used head-and-torso simulator—a so-called “dummy head”.

References

  • Alais, D., and D. Burr. 2004. The ventriloquist effect results from near-optimal bimodal integration. Current Biology 14: 257–62. https://doi.org/10.1016/j.cub.2004.01.029.

    Article  Google Scholar 

  • Anderson, P.W., P. Zahorik, J.A. Schirillo, and W. Forest. 2014. Auditory/visual distance estimation: accuracy and variability. Frontiers in Psychology 5 (October): 1–11. https://doi.org/10.3389/fpsyg.2014.01097.

    Article  Google Scholar 

  • Battaglia, P.W., R.A. Jacobs, and R.N. Aslin. 2003. Bayesian integration of visual and auditory signals for spatial localization. The Journal of the Optical Society of America 20 (7): 1391–1397.

    ADS  Google Scholar 

  • Baumgartner, R., P. Majdak, and B. Laback. 2013. Assessment of sagittal-plane localization performance. In The Technology of Binaural Listening, ed. J. Blauert, 93–119. Berlin- Heidelberg-New York: Springer and ASA Press.

    Google Scholar 

  • Berkeley, G. 1709. An Essay towards a New Theory of Vision.

    Google Scholar 

  • Bernstein, L.R., and C. Trahiotis. 2011. Lateralization produced by envelope-based interaural temporal disparities of high-frequency, raised-sine stimuli: empirical data and modeling. The Journal of the Acoustical Society of America 129 (3): 1501–8. https://doi.org/10.1121/1.3552875.

    Article  ADS  Google Scholar 

  • Bertelson, P., and M. Radeau. 1981. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception and Psychophysics 29 (6): 578–584.

    Google Scholar 

  • Bertelson, P., J. Vroomen, B. de Gelder, and J. Driver. 2000. The ventriloquist effect does not depend on the direction of deliberate visual attention. Perception and Psychophysics 62 (2): 321–332.

    Google Scholar 

  • Best, V., D.S. Brungart, S. Carlile, N. Jin, E.A. Macpherson, R.L. Martin, K.I. McAnally, A.T. Sabin, and B.D. Simpson. 2011. A meta-analysis of localization errors made in free field. In Principles and Applications of Spatial Hearing, vol. 1, ed. Y. Suzuki, D. Brungart, Y. Iwaya, K. Iida, D. Cabrera, and H. Kato, 14–23. Singapore: World Scientific Publishing. https://doi.org/10.1142/7674.

    Chapter  Google Scholar 

  • Blauert, J. 1969. Sound localization in the median plane. Acustica 22, 205–213.

    Google Scholar 

  • Blauert, J. 1997. Spatial Hearing: The Psychophysics of Human Sound Localization, 222–237. Cambridge: MIT Press.

    Google Scholar 

  • Boring, E.G. 1926. Auditory theory with special reference to intensity, volume, and localization. The American Journal of Psychology 37 (2): 157–188.

    Google Scholar 

  • Boring, E.G. 1942. Sensation and Pareception in the History of Experimental Psychology. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Braasch, J., S. Clapp, A. Parks, M.T. Pastore, and N. Xiang. 2013. A binaural model that analyses aural spaces and stereophonic reproduction systems by utilizing head movements. In The Technology of Binaural Listening, vol. 8, ed. J. Blauert, 201–224. Springer and ASA Press.

    Google Scholar 

  • Bridgeman, B., and L. Stark. 1991. Ocular proprioception and efference copy in registering visual direction. Vision Research 31 (11): 1903–1913. https://doi.org/10.1016/0042-6989(91)90185-8.

    Article  Google Scholar 

  • Brimijoin, W.O. 2018. Angle-dependent distortions in the perceptual topology of acoustic space. Trends in Hearing 22: 1–11. https://doi.org/10.1177/2331216518775568.

    Article  Google Scholar 

  • Brimijoin, W.O., and M.A. Akeroyd. 2012. The role of head movements and signal spectrum in an auditory front/back illusion. i-Perception 3 (3): 179–181. https://doi.org/10.1068/i7173sas.

    Article  Google Scholar 

  • Brimijoi, W.O., and M.A. Akeroyd. 2014. The moving minimum audible angle is smaller during self motion than during source motion. Frontiers in Neuroscience 8: 1–8. https://doi.org/10.3389/fnins.2014.00273.

    Article  Google Scholar 

  • Brimijoin, W.O., and M.A. Akeroyd. 2017. The effects of hearing impairment, age, and hearing aids on the use of self motion for determining front/back location. Journal of the American Academy of Audiology 27 (7): 588–600. https://doi.org/10.3766/jaaa.15101.

    Article  Google Scholar 

  • Bronkhorst, A.W., and T. Houtgast. 1999. Auditory distance perception in different rooms. Nature 397: 517–520.

    ADS  Google Scholar 

  • Brungart, D.S., N.I. Durlach, and W.M. Rabinowitz. 1999. Auditory localization of nearby sources. II. Localization of a broadband source. Journal of the Acoustical Society of America 106 (4): 1956–1968. https://doi.org/10.1121/1.427943.

    Article  ADS  Google Scholar 

  • Buzsáki, G., and R. Llinás. 2017. Space and time in the brain. Science 358 (October): 482–485.

    ADS  Google Scholar 

  • Carlile, S., and T. Blackman. 2014. Relearning auditory spectral cues for locations inside and outside the visual field. Journal of the Association for Research in Otolaryngology 15 (2): 249–263. https://doi.org/10.1007/s10162-013-0429-5.

    Article  Google Scholar 

  • Carlile, S., and J. Leung. 2016. The perception of auditory motion. Trends in Hearing 20: 1–19. https://doi.org/10.1177/2331216516644254.

    Article  Google Scholar 

  • Choe, C.S., R.B. Welch, R.M. Gilford, and J.F. Juola. 1975. The “ventriloquist effect”: Visual dominance or response bias? Perception and Psychophysics 18 (1): 55–60.

    Google Scholar 

  • Curcio, C.A., K.R. Sloan, R.E. Kalina, and A.E. Hendrickson. 1990. Human photoreceptor topography. Journal of Comparative Neurology 292 (4): 497–523. https://doi.org/10.1002/cne.902920402.

    Article  Google Scholar 

  • de Boer, K., and A.T. van Urk. 1941. Some particulars of directional hearing. Philips Technical Review 6: 359–364.

    Google Scholar 

  • Dorman, M.F., L.H. Loiselle, S.J. Cook, W.A. Yost, and R.H. Gifford. 2016. Sound source localization by normal hearing listeners, hearing-impaired listeners and cochlear implant listeners. Audiology and Neurotology 21: 127–131.

    Google Scholar 

  • Ernst, M.O., and M.S. Banks. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415 (6870): 429–433.

    ADS  Google Scholar 

  • Ernst, M.O., and H.H. Bülthoff. 2004. Merging the senses into a robust percept. Trends in Cognitive Sciences 8 (4): 162–169.

    Google Scholar 

  • Freeman, T.C.A., J.F. Culling, M.A. Akeroyd, and W.O. Brimijoin. 2017. Auditory compensation for head rotation is incomplete. Journal of Experimental Psychology 43 (2): 371–380. https://doi.org/10.1037/xhp0000321.

    Article  Google Scholar 

  • Genzel, D., U. Firzlaff, L. Wiegrebe, and P.R. MacNeilage. 2016. Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals. Journal of Neurophysiology 116 (2): 765–775. https://doi.org/10.1152/jn.00052.2016.

    Article  Google Scholar 

  • Genzel, D., M. Schutte, W.O. Brimijoin, and P.R. MacNeilage. 2018. Psychophysical evidence for auditory motion parallax. Proceedings of the National Academy of Sciences 115 (6): 4264–4269. https://doi.org/10.1073/pnas.1712058115.

    Article  Google Scholar 

  • Good, M.D., and R.H. Gilkey. 1996. Sound localization in noise: the effect of signal-to-noise ratio. The Journal of the Acoustical Society of America 99 (2): 1108–17. https://doi.org/10.1121/1.415233.

    Article  ADS  Google Scholar 

  • Goupell, M.J., and O.A. Stakhovskaya. 2018. Across-channel interaural-level-difference processing demonstrates frequency dependence. The Journal of the Acoustical Society of America 143 (2): 645–658. https://doi.org/10.1121/1.5021552.

    Article  ADS  Google Scholar 

  • Hairston, W.D., M.T. Wallace, J.W. Vaughan, B.E. Stein, J.L. Norris, and J.A. Schirillo. 2003. Visual localization ability influences cross-modal bias. Journal of Cognitive Neuroscience 15 (1): 20–29.

    Google Scholar 

  • Hartmann, W.M., and B. Rakerd. 1989. On the minimum audible angle-a decision theory approach. The Journal of the Acoustical Society of America 85 (5): 2031–2041.

    ADS  Google Scholar 

  • Hartmann, W.M., B. Rakerd, Z.D. Crawford, and P.X. Zhang. 2016. Transaural experiments and a revised duplex theory for the localization of low-frequency tones. The Journal of the Acoustical Society of America 139 (2): 968. https://doi.org/10.1121/1.4941915.

    Article  ADS  Google Scholar 

  • Hofman, P.M., J.G.A. van Riswick, and A.J. van Opstal. 1998. Relearning sound localization with new ears. Nature Neuroscience 1 (5): 417–421.

    Google Scholar 

  • Howard, I.P., and W.B. Templeton. 1996. Human Spatial Orientation, 359–362. New York: Wiley.

    Google Scholar 

  • Humanski, R.A., and R.A. Butler. 1988. The contribution of the near and far ear toward localization of sound in the sagittal plane. The Journal of the Acoustical Society of America 83 (6): 2300–2310. https://doi.org/10.1121/1.396361.

    Article  ADS  Google Scholar 

  • Jack, C.E., and W.R. Thurlow. 1973. Effects of degree of visual association and angle of displacement on the “ventriloquism” effect. Perceptual and Motor Skills 37 (3): 967–979.

    Google Scholar 

  • Jackson, C.V. 1953. Visual factors in auditory localization. Quarterly Journal of Experimental Psychology 5: 52–65.

    Google Scholar 

  • Jin, C., A. Corderoy, S. Carlile, and A. van Schaik. 2004. Contrasting monaural and interaural spectral cues for human sound localization. The Journal of the Acoustical Society of America 115 (6): 3124–3141. https://doi.org/10.1121/1.1736649.

    Article  ADS  Google Scholar 

  • Jones, B., and B. Kabanoff. 1975. Eye movements in auditory space perception. Perception and Psychophysics 17 (3): 241–245. https://doi.org/10.3758/BF03203206.

    Article  Google Scholar 

  • King, A.J. 2009. Visual influences on auditory spatial learning. Philosophical Transactions of the Royal Society B: Biological Sciences 364 (1515): 331–339. https://doi.org/10.1098/rstb.2008.0230.

    Article  Google Scholar 

  • Knudsen, E.I., and M.S. Brainard. 1995. Creating a unified representation of visual and auditory space in the brain. Annual Review of Neuroscience 18: 19–43. https://doi.org/10.1146/annurev.neuro.18.1.19.

    Article  Google Scholar 

  • Kohlrausch, A., and T. Altosaar. 2011. Early research on spatial hearing by Alvar Wilska (1911–1987). Forum Acusticum, 1103–1108. Aalborg: European Acoustics Association.

    Google Scholar 

  • Kolarik, A.J., B.C. Moore, P. Zahorik, S. Cirstea, and S. Pardhan. 2016. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception, and Psychophysics 78 (2): 373–395. https://doi.org/10.3758/s13414-015-1015-1.

    Article  Google Scholar 

  • Kording, K.P., U. Beierholm, W.J. Ma, S. Quartz, J.B. Tenenbaum, and L. Shams. 2007. Causal inference in multisensory perception. PLoS One 2 (9): e943. https://doi.org/10.1371/journal.pone.0000943.

    Article  ADS  Google Scholar 

  • Kuhn, G.F. 1977. Model for the interaural time differences in the azimuthal plane. The Journal of the Acoustical Society of America 62 (1): 157–167. https://doi.org/10.1121/1.381498.

    Article  ADS  Google Scholar 

  • Kuhn, G.F. 1987. Physical acoustics and measurements pertaining to directional hearing. In Directional Hearing, eds. W.A. Yost and G. Gourevitch, Chap 1, 3–25. Springer Nature. https://doi.org/10.1007/978-1-4612-4738-8_1.

  • Lackner, J.R., and P. DiZio. 2005. Vestibular, proprioceptive, and haptic contributions to spatial orientation. Annual Review of Psychology 56 (1): 115–147. https://doi.org/10.1146/annurev.psych.55.090902.142023.

    Article  Google Scholar 

  • Langendijk, E.H.A., and A.W. Bronkhorst. 2002. Contribution of spectral cues to human sound localization. The Journal of the Acoustical Society of America 112 (4): 1583. https://doi.org/10.1121/1.1501901.

    Article  ADS  Google Scholar 

  • Letowski, T., and S. Letowski. 2011. Localization error: accuracy and precision in auditory localization. In Advances in Sound Localization, Chap. 4, ed. P. Strumillo, 55–78. London: Intech Open. https://doi.org/10.5772/597.

    Chapter  Google Scholar 

  • Macaulay, E.J., W.M. Hartmann, and B. Rakerd. 2010. The acoustical bright spot and mislocalization of tones by human listeners. Journal of the Acoustical Society of America 127 (3): 1440–1449. https://doi.org/10.1121/1.3294654.

    Article  ADS  Google Scholar 

  • Macaulay, E.J., B. Rakerd, T.J. Andrews, and W.M. Hartmann. 2017. On the localization of high-frequency, sinusoidally amplitude-modulated tones in free field. Journal of the Acoustical Society of America 141 (2): 847–863. https://doi.org/10.1121/1.4976047.

    Article  ADS  Google Scholar 

  • Macpherson, E.A. 2011. Head motion, spectral cues, and Wallach’s ‘principle of least displacement’ in sound localization. In Principles and Applications of Spatial Hearing, Chap. 9, ed. Y. Suzuki, D. Brungart, and H. Kato, 103–120. Singapore: World Scientific.

    Google Scholar 

  • Macpherson, E.A., and J.C. Middlebrooks. 2002. Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. The Journal of the Acoustical Society of America 111 (5): 2219. https://doi.org/10.1121/1.1471898.

    Article  ADS  Google Scholar 

  • Makous, J.C., and J.C. Middlebrooks. 1990. Two-dimensional sound localization by human listeners. The Journal of the Acoustical Society of America 87 (5): 2188–2200. https://doi.org/10.1121/1.399186.

    Article  ADS  Google Scholar 

  • Martin, R.L., M. Paterson, and K.I. McAnally. 2004. Utility of monaural spectral cues is enhanced in the presence of cues to sound-source lateral angle. Journal of the Association for Research in Otolaryngology 5 (1): 80–89. https://doi.org/10.1007/s10162-003-3003-8.

    Article  Google Scholar 

  • McAnally, K.I., and R.L. Martin. 2008. Sound localisation during illusory self-rotation. Experimental Brain Research 185 (2): 337–40. https://doi.org/10.1007/s00221-007-1157-z.

    Article  Google Scholar 

  • Mendonça, C. 2020. Psychophysical models of sound localisation with audiovisual interactions. In The Technology of Binaural Understanding. Springer, ed. J. Blauert, and J. Braasch, 289–314. Cham, Switzerland: Springer and ASA Press.

    Google Scholar 

  • Middlebrooks, J.C. 1992. Narrow-band sound localization related to external ear acoustics. The Journal of the Acoustical Society of America 92 (5): 2607–24.

    ADS  Google Scholar 

  • Middlebrooks, J.C., J.C. Makous, and D.M. Green. 1989. Directional sensitivity of sound—pressure levels in the human ear canal. The Journal of the Acoustical Society of America 86 (1): 89–107. https://doi.org/10.1121/1.398224.

    Article  ADS  Google Scholar 

  • Middlebrooks, J.C., L. Xu, S. Furukawa, and E.A. Macpherson. 2002. Cortical neurons that localize sounds. Neuroscientist 8 (1): 73–83.

    Google Scholar 

  • Mills, A.W. 1960. Lateralization of high-frequency tones. The Journal of the Acoustical Society of America 32 (1): 132–134.

    ADS  Google Scholar 

  • Mills, A.W. 1972. Auditory localization. In Foundations of Modern Auditory Theory, ed. J.V. Tobias, 303–348. New York: Academic Press.

    Google Scholar 

  • Montagne, C., and Y. Zhou. 2016. Visual capture of a stereo sound : Interactions between cue reliability, sound localization variability, and cross-modal bias. The Journal of the Acoustical Society of America 140 (July): 471–485. https://doi.org/10.1121/1.4955314.

    Article  ADS  Google Scholar 

  • Montagne, C., and Y. Zhou. 2018. Audiovisual interactions in front and rear space. Frontiers in Psychology 9 (MAY): 1–15. https://doi.org/10.3389/fpsyg.2018.00713.

    Article  Google Scholar 

  • Morimoto, M. 2001. The contribution of two ears to the perception of vertical angle in sagittal planes. The Journal of the Acoustical Society of America 109 (4): 1596–1603. https://doi.org/10.1121/1.1352084.

    Article  ADS  Google Scholar 

  • Morimoto, M., and H. Aokata. 1984. Localization cues of sound sources in the upper hemisphere. Journal of the Acoustical Society of Japan 5 (3): 165–173. https://doi.org/10.1250/ast.5.165.

    Article  Google Scholar 

  • Musicant, A.D., and R.A. Butler. 1984. The influence of pinnae-based spectral cues on sound localization. Journal of the Acoustical Society of America 75 (4): 1195–1200. https://doi.org/10.1121/1.390770.

    Article  ADS  Google Scholar 

  • Pastore, M.T., and W.A. Yost. 2017. Sound source localization as a multisensory process: The Wallach azimuth illusion. The Journal of the Acoustical Society of America 141 (5): 3635–3635.

    ADS  Google Scholar 

  • Perrett, S., and W. Noble. 1997a. The contribution of head motion cues to localization of low-pass noise. Perception and Psychophysics 59 (7): 1018–1026. https://doi.org/10.3758/BF03205517.

    Article  Google Scholar 

  • Perrett, S., and W. Noble. 1997b. The contribution of head motion cues to localization of low-pass noise. Perception and Psychophysics 59 (7): 1018–1026.

    Google Scholar 

  • Pick, H.L., D.H. Warren, and J.C. Hay. 1969. Sensory conflict in judgments of spatial direction. Perception and Psychophysics 6 (4): 203–205.

    Google Scholar 

  • Pierce, A. 1901. Studies in Auditory and Visual Space Perception. New York: Longmans, Green, and Co.

    Google Scholar 

  • Platt, B.B., and D.H. Warren. 1972. Auditory localization: The importance of eye movements and a textured visual environment. Perception and Psychophysics 12 (2B): 245–248.

    Google Scholar 

  • Radeau, M., and P. Bertelson. 1974. The after-effects of ventriloquism. The Quarterly Journal of Experimental Psychology 26 (1): 63–71. https://doi.org/10.1080/14640747408400388.

    Article  Google Scholar 

  • Radeau, M., and P. Bertelson. 1977. Adaptation to auditory-visual discordance and ventriloquism in semirealistic situations. Perception and Psychophysics 22 (2): 137–146. https://doi.org/10.3758/BF03198746.

    Article  Google Scholar 

  • Radeau, M., and P. Bertelson. 1987. Auditory-visual interaction and the timing of inputs. Thomas (1941) revisited. Psychological Research 49 (1): 17–22.

    Google Scholar 

  • Rayleigh, L. 1876. On our perception of the direction of a source of sound. In Proceedings of the Musical Association, vol. 2, 75–84.

    Google Scholar 

  • Recanzone, G.H. 2009. Interactions of auditory and visual stimuli in space and time. Hearing Research 258 (1–2): 89–99. https://doi.org/10.1016/j.heares.2009.04.009.

    Article  Google Scholar 

  • Searle, C.L. 1973. Cues required for externalization and vertical localization. The Journal of the Acoustical Society of America 54: 308. https://doi.org/10.1121/1.1978213.

    Article  Google Scholar 

  • Shelton, B.R., and C.L. Searle. 1980. The influence of vision on the absolute identification of sound-source position. Perception and Psychophysics 28 (6): 589–96.

    Google Scholar 

  • Sivia, D.S., and J.S. Skilling. 2006. Data Analysis: A Bayesian Tutorial, 2nd ed. New York: Oxford University Press.

    MATH  Google Scholar 

  • Slattery, W.H., and J.C. Middlebrooks. 1994. Monaural sound localization: acute versus chronic unilateral impairment. Hearing Research 75 (1): 38–46.

    Google Scholar 

  • Slutsky, D.A., and G.H. Recanzone. 2001. Temporal and spatial dependency of the ventriloquism effect. Neuroreport 12 (1): 7–10.

    Google Scholar 

  • Solman, G.J., T. Foulsham, and A. Kingstone. 2017. Eye and head movements are complementary in visual selection. Royal Society Open Science 4 (1): 160569. https://doi.org/10.1098/rsos.160569.

    Article  ADS  Google Scholar 

  • Spence, C., and J. Driver. 2000. Attracting attention to the illusory location of a sound: reflexive crossmodal orienting and ventriloquism. Neuroreport 11 (9): 2057–2061.

    Google Scholar 

  • Stein, B.E., and M.A. Meredith. 1990. Multisensory integration. Neural and behavioral solutions for dealing with stimuli from different sensory modalities. Annals of the New York Academy of Sciences 608: 51–70.

    ADS  Google Scholar 

  • Steinman, S.B., and R.P. Garzia. 2000. Foundations of Binocular Vision: A Clinical perspective, 2–5. McGraw-Hill Professional

    Google Scholar 

  • Stensola, T., and E.I. Moser. 2016. Grid cells and spatial maps in entorhinal cortex and hippocampus. In Micro-, Meso- and Macro-Dynamics of the Brain. Research and Perspectives in Neurosciences, ed. G. Buzsáki, and Y. Christen, 59–80. Cham: Springer. https://doi.org/10.1007/978-3-319-28802-4.

    Chapter  Google Scholar 

  • Thompson, S.P. 1878. On binaural audition. Philosophical Magazine 2 (6): 383–391.

    Google Scholar 

  • Thurlow, W.R., and C.E. Jack. 1973. Certain determinants of the ‘ventriloquism effect’. Perceptual and Motor Skills 36 (3): 1171–1184. https://doi.org/10.2466/pms.1973.36.3c.1171.

    Article  Google Scholar 

  • Thurlow, W.R., and T.P. Kerr. 1970. Effect of a moving visual environment on localization of sound. The American Journal of Psychology 83 (1): 112–118.

    Google Scholar 

  • Van Opstal, A.J. 2016. The Auditory System and Human Sound-Localization Behavior, 1st ed, 436. Amsterdam: Academic Press.

    Google Scholar 

  • Van Wanrooij, M.M., and A.J. Van Opstal. 2004. Contribution of head shadow and pinna cues to chronic monaural sound localization. Journal of Neuroscience 24 (17): 4163–4171. https://doi.org/10.1523/JNEUROSCI.0048-04.2004.

    Article  Google Scholar 

  • Wallace, M.T., R. Ramachandran, and B.E. Stein. 2004. A revised view of sensory cortical parcellation. Proceedings of the National Academy of Sciences 101 (7): 2167–2172. https://doi.org/10.1073/pnas.0305697101.

    Article  ADS  Google Scholar 

  • Wallach, H. 1938. Über die Wahrnehmung der Schallrichtung (On the perception of sound direction). Psychologische Forschung 22 (3–4): 238–266.

    Google Scholar 

  • Wallach, H. 1939. On sound localization. The Journal of the Acoustical Society of America 10 (4): 270–274.

    ADS  Google Scholar 

  • Wallach, H. 1940. The role of head movements and vestibular and visual cues in sound localization. Journal of Experimental Psychology 27 (4): 339–368.

    MathSciNet  Google Scholar 

  • Warren, D.H. 1970. Intermodality interactions in spatial localization. Cognitive Psychology 1 (2): 114–133. https://doi.org/10.1016/0010-0285(70)90008-3.

    Article  Google Scholar 

  • Welch, R.B., and D.H. Warren. 1980. Immediate perceptual response to intersensory discrepancy. Psychological Bulletin 88 (3): 638.

    Google Scholar 

  • Wenzel, E.M., M. Arruda, D.J. Kistler, and F.L. Wightman. 1993. Localization using nonindividualized head-related transfer functions. The Journal of the Acoustical Society of America 94 (1): 111–123.

    ADS  Google Scholar 

  • Wightman, F.L., and D.J. Kistler. 1997. Monaural sound localization revisited. The Journal of the Acoustical Society of America 101 (2): 1050–63. https://doi.org/10.1121/1.418029.

    Article  ADS  Google Scholar 

  • Wightman, F.L., and D.J. Kistler. 1999. Resolution of front-back ambiguity in spatial hearing by listener and source movement. The Journal of the Acoustical Society of America 105 (5): 2841–53. https://doi.org/10.1121/1.426899.

    Article  ADS  Google Scholar 

  • Woodworth, R., and H. Schlosberg. 1938. Experimental Psychology. New York: Henry Holt and Company.

    Google Scholar 

  • Yost, W.A. 1981. Lateral position of sinusoids presented with interaural intensive and temporal differences. The Journal of the Acoustical Society of America 70 (2): 397–409. https://doi.org/10.1121/1.386775.

    Article  ADS  Google Scholar 

  • Yost, W.A. 2016. Sound source localization identification accuracy: Level and duration dependencies. The Journal of the Acoustical Society of America 140 (1): EL14–EL19. https://doi.org/10.1121/1.4898045.

    Article  ADS  Google Scholar 

  • Yost, W.A. 2017a. History of sound source localization: 1850–1950. The Journal of the Acoustical Society of America 30: 1–15. https://doi.org/10.1121/2.0000529.

    Article  Google Scholar 

  • Yost, W.A. 2017b. Sound source localization identification accuracy: Envelope dependencies. The Journal of the Acoustical Society of America 142 (1): 173–185. https://doi.org/10.1121/1.4990656.

    Article  ADS  Google Scholar 

  • Yost, W.A., M.T. Pastore, and K.R. Pulling. 2019. Sound source localization as a multisystem process: the Wallach azimuth illusion. The Journal of the Acoustical Society of America 146 (1): 382–398.

    ADS  Google Scholar 

  • Yost, W.A., M.T. Pastore, and M.F. Dorman. 2020. Sound source localization is a multisystem process. Acoustical Science and Technology 41 (1).

    Google Scholar 

  • Yost, W.A., X. Zhong, and A. Najam. 2015. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process. The Journal of the Acoustical Society of America 138 (5): 3293–3310. https://doi.org/10.1121/1.4920001.

    Article  ADS  Google Scholar 

  • Zahorik, P. 2002. Direct-to-reverberant energy ratio sensitivity. The Journal of the Acoustical Society of America 112 (5): 2110. https://doi.org/10.1121/1.1506692.

    Article  ADS  Google Scholar 

  • Zahorik, P., P. Bangayan, V. Sundareswaran, K. Wang, and C. Tam. 2006. Perceptual recalibration in human sound localization: Learning to remediate front-back reversals. The Journal of the Acoustical Society of America 120 (1): 343–359. https://doi.org/10.1121/1.2208429.

    Article  ADS  Google Scholar 

  • Zhong, X., L. Sun, and W.A. Yost. 2016. Active binaural localization of multiple sound sources. Robotics and Autonomous Systems 85: 83–92. https://doi.org/10.1016/j.robot.2016.07.008.

    Article  Google Scholar 

  • Zwiers, M.P., and A.J. van Opstal. 2001. A spatial hearing deficit in early-blind humans. Journal of Neuroscience 21 (9): RC142.

    Google Scholar 

Download references

Acknowledgements

The work reported here is supported by the National Science Foundation (No. NSF BCS-1539376), the National Institute for Deafness and Communication Disorders (Nos. R0101DC015214 and F32DC017676), and Facebook Reality Labs. The authors are indebted to two anonymous reviewers for constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Torben Pastore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pastore, M.T., Zhou, Y., Yost, W.A. (2020). Cross-Modal and Cognitive Processes in Sound Localization. In: Blauert, J., Braasch, J. (eds) The Technology of Binaural Understanding. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-00386-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00386-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00385-2

  • Online ISBN: 978-3-030-00386-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics