Skip to main content

Abstract

Zinc (Zn) is an essential trace element having a wide range of biological roles. The presented data concern Zn concentrations in various organs of terrestrial mammals and birds. In studies on terrestrial mammals, a measurable response to Zn pollution is exhibited by canids common in natural and seminatural habitats, including the red fox, raccoon, American mink, otters, and ungulates, such as the white-tailed deer, reindeer, red deer, and wild boar. Birds are used as bioindicators because they are abundant and widely distributed, have long lifespans, and feed at different trophic levels and are often the top consumers. At the same time, they are more sensitive to Zn contamination than other vertebrates and therefore seem to be better bioindicators. Nestling passerines are potential good biomonitors for Zn pollution because Zn is ingested in a clearly defined time period and originates from a limited parental foraging area. Zinc concentrations in the tissues of mammals and birds depend both on biological factors (e.g., age, physiological condition, animal species, sex, and age) and environmental factors (e.g., supply of Zn in the diet). Long-term bioindication research conducted on the organs and tissues of mammals and birds, as well as noninvasive sampling of eggs and feathers, indicates the usefulness of this type of material for evaluating the state of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aastrup P, Riget F, Dietz R, Asmund G (2000) Lead, zinc, cadmium, mercury, selenium and copper in Greenland caribou and reindeer (Rangifer tarandus). Sci Total Environ 245:149–159

    Article  CAS  Google Scholar 

  • Abdel-Mageed AB, Oehme FW (1990) A review of the biochemical roles, toxicity and interactions of zinc, copper and iron: II. Copper. Vet Hum Toxicol 32:230–234

    CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer Verlag, New York

    Book  Google Scholar 

  • Albayrak T, Mor F (2011) Comparative tissue distribution of heavy metals in house sparrow (Passer domesticus, Aves) in polluted and reference sites in Turkey. Bull Environ Contam Toxicol 87:457–462

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition. Paris/Brussels IFA/IZA

    Google Scholar 

  • Amici A, Danieli PP, Russo C, Primi R, Ronchi B (2012) Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the Province of Viterbo, Central Italy. Ital J Anim Sci 11:354–362

    Article  CAS  Google Scholar 

  • Anderson-Bledsoe KL, Scanlon PF (1983) Heavy metal concentrations in tissues of Virginia river otters. Bull Environ Contam Toxicol 30:442–447

    Article  CAS  Google Scholar 

  • Arnhold W, Anke M, Goebel S (2002) The copper, zinc and manganese status in opossum and gray fox. Z Jagdwiss 48:77–86

    Google Scholar 

  • Ashby SL, King LJ, Parker D (1981) The effect of cadmium administration on the biliary excretion of Cu and Zn and tissue disposition of metals. Environ Res 26:95–104

    Article  CAS  Google Scholar 

  • ATSDR (2005) Toxicological profile for zinc. United States Government. http://www.atsdr.cdc.gov/toxprofiles/tp60.html. Accessed 7 Jan 2012

  • Aubert H, Pinta M (1977) Trace elements in soils, Developments in soil science, 7. Elsevier, Amsterdam

    Google Scholar 

  • Badzinski SS, Flint PL, Gorman KB, Petrie SA (2009) Relationships between hepatic trace element concentrations, reproductive status, and body condition of female greater scaup. Environ Pollut 157:1886–1893

    Article  CAS  Google Scholar 

  • Beach RS, Gershwin ME, Hurley LS (1982) Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science 218:469–471

    Article  CAS  Google Scholar 

  • Benito V, Devesa V, MuĂąoz O, SuĂąer MA, Montoro R, Baos R et al (1999) Trace elements in blood collected from birds feeding in the area around DoĂąana National Park affected by the toxic spill from the AznacĂłllar mine. Sci Total Environ 242:309–323

    Article  CAS  Google Scholar 

  • Bernhoft A, Waaler T, Mathiesen SD, Flaoyen A (1999) Trace elements in reindeer from Rybatsjij Ostrov, north western Russia. National Veterinary The Tenth Arctic Ungulate Conference, University of Tromsø, Norway, 9–13 August 1999

    Google Scholar 

  • Bernhoft A, Waaler T, Mathiesen SD, Flaoyen A (2002) Trace elements in reindeer from Rybatsjij Ostrov, north western Russia. Rangifer 22:67–73

    Article  Google Scholar 

  • Beyer WN, Pattee OH, Sileo L, Hoffman DJ, Mulhern BM (1985) Metal contamination in wildlife living near two zinc smelters. Environ Pollut Ser A 38:63–86

    Article  CAS  Google Scholar 

  • Beyer WN, Dalgarn J, Dudding S, French JB, Mateo R, Miesner J et al (2005) Zinc and lead poisoning in wild birds in the tri-state mining district (Oklahoma, Kansas, and Missouri). Arch Environ Contam Toxicol 48:108–117

    Article  CAS  Google Scholar 

  • Binkowski ŁJ, Merta D, Przystupińska A, Soltysiak Z, Pacon J, Stawarz R (2016) Levels of metals in kidney, liver and muscle tissue and their relation to the occurrence of parasites in the red fox in the Lower Silesian Forest in Europe. Chemosphere 149:161–167

    Article  CAS  Google Scholar 

  • Binnerts W (1989) Zinc status of cows as deduced from the liver zinc content. Netherlands J Agr Sci 37:107–117

    CAS  Google Scholar 

  • Bojar H, Bojar S (2009) Monitoring of contamination of the Lublin region wetlands using mallards (Anas platyrhynchos) as a vector of the contamination by various conditionally toxic elements. Ann Anim Sci 9:195–204

    Google Scholar 

  • Borch-Iohnsen B, Nilssen KJ, Norheim G (1996) Influence of season and diet on liver and kidney content of essential elements and heavy metals in Svalbard reindeer. Biol Trace Elem Res 51:235–247

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Broekhuizen S (1987) First data on contamination of otters in the Netherlands. IUCN Otter Spec Group Bull 2:27–32

    Google Scholar 

  • Brumbaugh WG, Mora MA, May TW, Phalen DN (2010) Metal exposure and effects in voles and small birds near a mining haul road in Cape Krusenstern National Monument, Alaska. Environ Monit Assess 170:73–86

    Article  CAS  Google Scholar 

  • Brzezinski M, Zalewski A, Niemczynowicz A, Jarzyna I, Suska-Malawska M (2014) The use of chemical markers for the identification of farm escapees in feral mink populations. Ecotoxicology 23:767–778

    Article  CAS  Google Scholar 

  • Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Contam Toxicol 5:203–311

    Google Scholar 

  • Burger J (1995) Heavy metal and selenium levels in feathers of herring gulls (Larus argentatus): differences due to year, gender, and age at Captree, Long Island. Environ Monit Assess 38:37–50

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M (1985) Nest site selection by Laughing Gulls: comparison of tropical colonies (Culebra, Puerto Rico) with temperate colonies (New Jersey). Condor 87:364–373

    Article  Google Scholar 

  • Cahill TM, Anderson DW, Elbert RA, Perley BP, Johnson DR (1998) Elemental profiles in feather samples from a mercury-contaminated lake in central California. Arch Environ Contam Toxicol 35:75–81

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Caldwell DE (1994) Zinc toxicity in the dog. Canine Pract 19:6–7

    Google Scholar 

  • Chaney RL, Ryan JA, Reeves PG (2001) Strategies in soil protection – missions and visions. Presented at Symposium on Soil protection in the United Europe, Vienna, Austria, 5 September 2001

    Google Scholar 

  • Chao P, Guangmei Z, Zhengwang Z, Chengyi Z (2003) Metal contamination in tree sparrows in different locations of Beijing. Bull Environ Contam Toxicol 71:142–147

    Article  CAS  Google Scholar 

  • Charles CH, Cronin MJ, Conforti NJ, Dembling WZ, Petrone DM, McGuire JA (2001) Anticalculus efficacy of an antiseptic mouthrinse containing zinc chloride. J Am Dent Assoc 132:94–98

    Article  CAS  Google Scholar 

  • Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115

    Article  CAS  Google Scholar 

  • Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  CAS  Google Scholar 

  • Costa RA, Eeva T, Eira C, Vaqueiro J, Vingada JV (2013) Assessing heavy metal pollution using Great Tits (Parus major): feathers and excrements from nestlings and adults. Environ Monit Assess 185:5339–5344

    Article  CAS  Google Scholar 

  • Custer T, Cox E, Gray B (2004) Trace elements in moose (Alces alces) found dead in northwestern Minnesota, USA. Sci Total Environ 330:81–87

    Article  CAS  Google Scholar 

  • Cybulski W, Jarosz L, Chałabis-Mazurek A, Jakubczak A, Kostro K, Kursa K (2009) Contents of zinc, copper, chromium and manganese in silver foxes according to their age and mineral supplementation. Pol J Vet Sci 12:339–345

    CAS  Google Scholar 

  • Danczak A, Ligocki M, Kalisińska E (1997) Heavy metals in the organs of Anseriform birds. Pol J Environ Stud 5:39–42

    Google Scholar 

  • Dardenne M (2002) Zinc and immune function. Eur J Clin Nutr 56:S20–S23

    Article  CAS  Google Scholar 

  • Dardenne M, Pleau JM, Nabarra B, Lefrancier P, Derrien M, Choay M et al (1982) Contribution of zinc and other metals to the biological activity of the serum thymic factor. Proc Natl Acad Sci USA 79:5370–5373

    Article  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M (1999) Are eggshells and egg contents of Great and Blue Tits suitable as indicators of heavy metal pollution? Belg J Zool 129:439–447

    Google Scholar 

  • Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M (2000) Can excrement and feathers of nestling songbirds be used as biomonitors for heavy metal pollution? Arch Environ Contam Toxicol 39:541–546

    Article  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Pinxten R, Blust R, Eens M (2003) Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ Pollut 124:429–436

    Article  CAS  Google Scholar 

  • Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch Environ Contam Toxicol 49:249–256

    Article  CAS  Google Scholar 

  • Day DD, Beyer WN, Hoffman DJ, Morton A, Sileo L, Audet DJ et al (2003) Toxicity of lead-contaminated sediment to mute swans. Arch Environ Contam Toxicol 44:510–522

    Article  CAS  Google Scholar 

  • Demirak A, Balci A, Dalman O. Tufekci M (2005) Chemical investigation of water resources around the Yatagan Thermal Power Plant of Turkey. Water Air Soil Pollut 162:171-181

    Google Scholar 

  • Deng H, Zhang Z, Chang C, Wang Y (2007) Trace metal concentration in Great Tit (Parus major) and Greenfinch (Carduelis sinica) at the Western Mountains of Beijing, China. Environ Pollut 148:620–626

    Article  CAS  Google Scholar 

  • Denneman WD, Douben PE (1993) Trace metals in primary feathers of the Barn Owl (Tyto alba guttatus) in the Netherlands. Environ Pollut 82:301–310

    Article  CAS  Google Scholar 

  • Di Giulio RT, Scanlon PF (1984) Effects of cadmium and lead ingestion on tissue concentrations of cadmium, lead, copper, and zinc in mallard ducks. Sci Total Environ 39:103–110

    Article  CAS  Google Scholar 

  • Dip R, Stieger C, Deplazes P, Hegglin D, Mueller U, Dafflon O et al (2001) Comparison of heavy metal concentrations in tissues of red foxes from adjacent urban, suburban, and rural areas. Arch Environ Contam Toxicol 40:551–556

    Article  CAS  Google Scholar 

  • Dlugaszek M, Kopczynski K (2011) Comparative analysis of liver mineral status of wildlife. Probl Hig Epidemiol 92:859–863

    Google Scholar 

  • Dlugaszek M, Kopczynski K (2013) Elemental composition of muscle tissue of wild animals from central region of Poland. Int J Environ Res 7:973–978

    CAS  Google Scholar 

  • Dmowski K, Golimowski J (1993) Feathers of magpie (Pica pica) as a bioindicative material for heavy metal pollution assessment. Sci Total Environ 139:251–258

    Article  Google Scholar 

  • Domingo JL, Llobet JM, Paternain JL, Corbella J (1988) Acute zinc intoxication: comparison of the antidotal efficacy of several chelating agents. Vet Hum Toxicol 30:224–228

    CAS  Google Scholar 

  • Doncheva S, Stoynova Z, Velikova V (2001) Influence of succinate on zinc toxicity of pea plants. J Plant Nutr 24:789–804

    Article  CAS  Google Scholar 

  • Doneley R (1992) Zinc toxicity in caged and aviary diseases – new wire disease. Aust Vet Pract 22:6–11

    Google Scholar 

  • Duffy JY, Miller CM, Rutschilling GL, Ridder GM, Clegg MS, Keen CL et al (2001) A decrease in intracellular zinc level precedes the detection of early indicators of apoptosis in HL-60 cells. Apoptosis 6:161–172

    Article  CAS  Google Scholar 

  • Eens M, Pinxten R, Verheyen RF, Blust R, Bervoets L (1999) Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol Environ Saf 44:81–85

    Article  CAS  Google Scholar 

  • Eeva T, Hakkarainen H, Belskii E (2009) Local survival of pied flycatcher males and females in a pollution gradient of a Cu smelter. Environ Pollut 157:1857–1861

    Article  CAS  Google Scholar 

  • Eisler R (1984) Trace metal changes associated with age of marine vertebrates. Biol Trace Elem Res 6:165–180

    Article  CAS  Google Scholar 

  • Eisler R (1993) Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. Contaminant Hazard Reviews, Biological Report 10. United States Fish and Wildlife Service, Laurel, MD

    Google Scholar 

  • Ek KH, Morrison GM, Lindberg P, Rauch S (2004) Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS. Arch Environ Contam Toxicol 47:259–269

    Article  CAS  Google Scholar 

  • Elinder CG (1986) Zinc. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier Science Publishers, Amsterdam, pp 664–679

    Google Scholar 

  • Elkin BT, Bethke RW (1995) Environmental contaminants in caribou in the Northwest Territories, Canada. Sci Total Environ 160:307–321

    Article  Google Scholar 

  • EPA (1987) Ambient aquatic life water quality criteria for zinc. Office of Water, U.S. Environmental Protection Agency, Washington, DC EPA 440/5-87-003

    Google Scholar 

  • Eriksson M, Lord J, Jacobson S (2001) Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass. Wear 249:272–278

    Article  CAS  Google Scholar 

  • Falandysz J (1994) Some toxic and trace metals in big game hunted in the northern part of Poland in 1987-1991. Sci Total Environ 141:59–73

    Article  CAS  Google Scholar 

  • Falandysz J, Jakuczun B, Mizera T (1988) Metals and organochlorines in four female white-tailed eagles. Mar Pollut Bull 19:521–526

    Article  CAS  Google Scholar 

  • Falandysz J, Strandberg L, Mizera T, Kalisinska E (2000) The contamination of white-tailed sea eagles with organichlorines in Poland. Rocz Panstw Zakl Hig 51:7–13

    CAS  Google Scholar 

  • Fernandes G, Nair M, Onoe K, Tanaka T, Floyd R, Good RA (1979) Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc Natl Acad Sci USA 76:457–461

    Article  CAS  Google Scholar 

  • Ferrington LC (1989) Occurrence and biological effects of cadmium, lead, manganese and zinc in the Short Creek/Empire Lake aquatic system in Cherokee County, Kansas. Kansas Water Resources Research Institute Report, contribution no. 277. Kansas Water Resources Research Institute, Manhattan, KS

    Google Scholar 

  • Furness RW (1993) Birds as monitors of pollutants. In: Furness RW, Greenwood JJ (eds) Birds as monitors of environmental change. Chapman & Hall, London, pp 86–143

    Chapter  Google Scholar 

  • Galan E, Gonzalez I, Fernandez-Caliani JC (2002) Residual pollution load of soils impacted by the AznalcĂłllar (Spain) mining spill after clean-up operations. Sci Total Environ 286:167–179

    Article  CAS  Google Scholar 

  • Gamberg M, Braune BM (1999) Contaminant residue levels in arctic wolves (Canis lupus) from the Yukon Territory, Canada. Sci Total Environ 243(244):329–338

    Article  Google Scholar 

  • Gamberg M, Braune B, Davey E, Elkin B, Hoekstra PF, Kennedy D et al (2005) Spatial and temporal trends of contaminants in terrestrial biota from the Canadian Arctic. Sci Total Environ 351–352:148–164

    Article  CAS  Google Scholar 

  • Gasaway WC, Buss IO (1972) Zinc toxicity in the mallard duck. J Wildl Manag 36:1107–1117

    Article  CAS  Google Scholar 

  • Gasparik J, Massanyi P, Slamecka J, Fabis M, Jurcik R (2003) Concentration of selected metals in liver, kidney and muscle of the red deer (Cervus elaphus). RizikovĂŠ faktory potravovĂŠho reĹĽazca III, Nitra

    Google Scholar 

  • Gasparik J, Dobias M, CapCarova M, Smehyl P, Slamecka J, Bujko J et al (2012) Concentration of cadmium, mercury, zinc, copper and cobalt in the tissues of wild boar (Sus scrofa) hunted in the western Slovakia. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 47:1212–1216

    Article  CAS  Google Scholar 

  • Georgieskii VI, Annenkov BN, Samokhin VT (1982) Mineral nutrition of animals. Butterworths, Boston, MA

    Google Scholar 

  • Gilabert ER, Ruiz E, Osorio C, Ortega E (1996) Effect of dietary zinc deficiency on reproductive function in male rats: biochemical and morphometric parameters. J Nutr Biochem 7:403–407

    Article  CAS  Google Scholar 

  • Gochfeld M, Burger J (1987) Heavy metal concentrations in the liver of three duck species: influence of species and sex. Environ Pollut 45:1–15

    Article  CAS  Google Scholar 

  • Goede AA (1985) Mercury, selenium, arsenic and zinc in waders from the Dutch Wadden Sea. Environ Pollut 37:287–309

    Article  CAS  Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Clarendon Press, Oxford

    Google Scholar 

  • Gomez G, Baos R, Gomara B, Jimenez B, Benito V, Montoro R et al (2004) Influence of a mine tailing accident near DoĂąana National Park (Spain) on heavy metals and arsenic accumulation in 14 species of waterfowl (1998 to 2000). Arch Environ Contam Toxicol 47:521–529

    Article  CAS  Google Scholar 

  • Gong Q, Jin Z, Zou H (2012) Concentrations of copper, zinc and manganese in Tree Sparrow (Passer montanus) at Jixi, Heilongjiang Province, China. J For Res 23:319–322

    Article  CAS  Google Scholar 

  • Goodwin FE (1998) Zinc compounds. In: Kroschwitz J, Howe-Grant M (eds) Krik-Othmer encyclopedia of chemical technology. John Wiley & Sons, New York, pp 840–853

    Google Scholar 

  • Gordon RF (1977) Poultry diseases. The English Language Book Society and Bailliere Tindall, London

    Google Scholar 

  • Goyer R, Klaassen CD, Waalkes MP (1995) Metal toxicology. Academic Press, San Diego, pp 35–37

    Book  Google Scholar 

  • Gragnaniello S, Fulgione D, Milone M, Soppelsa O, Cacace P, Ferrara L (2001) Sparrows as possible heavy-metal biomonitors of polluted environments. Bull Environ Contam Toxicol 66:719–726

    Article  CAS  Google Scholar 

  • Gupta R, Kanaujia A (2014) Metal toxicity in black kites, Milvus migrans govinda in Bundelkhand Region of India. World J Biol Med Science 1:76–98

    Google Scholar 

  • Gurnee CM, Drobatz KJ (2007) Zinc intoxication in dogs: 19 cases (1991-2003). J Am Vet Med Assoc 230:1174–1179

    Article  CAS  Google Scholar 

  • Gutleb AC (1992) The otter in Austria: a review on the current state of research. IUCN Otter Spec Group Bull 7:4–9

    Google Scholar 

  • Gutleb AC, Kranz A, Nechay G, Toman A (1998) Heavy metal concentrations in livers and kidneys of the otter (Lutra lutra) from Central Europe. Bull Environ Contam Toxicol 60:273–279

    Article  CAS  Google Scholar 

  • Halbrook RS, Woolf A, Hubert GF, Ross R Jr, Braselton WE (1996) Contaminant concentrations in Illinois mink and otter. Ecotoxicology 5:103–114

    Article  CAS  Google Scholar 

  • Hambridge KM, Casey CE, Krebs NF (1986) Zinc. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 2, 5th edn. Academic Press, New York, pp 1–137

    Google Scholar 

  • Hammond GM, Loewen ME, Blakley BR (2004) Diagnosis and treatment of zinc poisoning in a dog. Vet Hum Toxicol 46:272–275

    CAS  Google Scholar 

  • Hanusova E, Mertin D, SuvegovĂĄ K, Szeleszczuk O (2007) Comparison of content of mineral elements in selected organs in carnivorous fur animals. Trace Elem Electrolytes 24:12–18

    Article  CAS  Google Scholar 

  • Harding LE, Harris ML, Elliott JE (1998) Heavy and trace metals in wild mink (Mustela vison) and river otter (Lontra canadensis) captured on rivers receiving metals discharges. Bull Environ Contam Toxicol 61:600–607

    Article  CAS  Google Scholar 

  • HazDat (2005) HazDat database: ATSDR’s hazardous substance release and health effects database. Atlanta, GA

    Google Scholar 

  • Heltai M, Markov G (2012) Red fox (Vulpes vulpes Linnaeus, 1758) as biological indicator for environmental pollution in Hungary. Bull Environ Contam Toxicol 89:910–914

    Article  CAS  Google Scholar 

  • Henkel G, Krebs B (2004) Metallothioneins: zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features—structural aspects and biological implications. Chem Rev 104:801–824

    Article  CAS  Google Scholar 

  • Herbert GB, Peterle TJ (1990) Heavy metaland organochlorinecompound concentrations in tissues of raccoons from east-central Michigan. Bull Environ Contam Toxicol 44:331–338

    Article  CAS  Google Scholar 

  • Hernandez LM, Gomara G, Fernandez M, Jimenez B, Gonzalez MJ, Baos R et al (1999) Accumulation of heavy metals and As in wetland birds in the area around DoĂąana National Park affected by the AznalcĂłllar toxic spill. Sci. Total Environ 242:293–308

    Article  CAS  Google Scholar 

  • Hernandez F, Oldenkamp RE, Webster S, Beasley JC, Farina LL, Wisely SM (2017) Raccoons (Procyon lotor) as sentinels of trace element contamination and physiological effects of exposure to coal fly ash. Arch Environ Contam Toxicol 72:235–246

    Article  CAS  Google Scholar 

  • Herschfinkel M, Silverman WF, Sekler I (2007) The zinc sensing receptor, a link between zinc and cel signaling. Mol Med 13:331–336

    Google Scholar 

  • Hoekstra PF, Braune BM, Elkin B, Armstrong FA, Muir DC (2003) Concentrations of selected essential and non-essential elements in arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic. Sci Total Environ 20:81–92

    Article  CAS  Google Scholar 

  • Hoffmann SR, Blunck SA, Petersen KN, Jones EM, Koval JC, Misek R et al (2010) Cadmium, copper, iron, and zinc concentrations in kidneys of grey wolves, Canis lupus, from Alaska, Idaho, Montana (USA) and the Northwest Territories (Canada). Bull Environ Contam Toxicol 85:481–485

    Article  CAS  Google Scholar 

  • Hogstad O (1996) Accumulation of cadmium, copper and zinc in the liver of some passerine species wintering in central Norway. Sci Total Environ 183:187–194

    Article  CAS  Google Scholar 

  • Holterman WF, de Voogt P, Peereboom-Stegeman JH (1984) Cadmium/zinc relationships in kidney cortex and metallothionein of horse and red deer: histopathological observations on horse kidneys. Environ Res 35:466–481

    Article  CAS  Google Scholar 

  • Hornfeldt CS, Koepke TE (1984) A case of suspected zinc toxicity in a dog. Vet Hum Toxicol 26:214

    CAS  Google Scholar 

  • Hutton M (1981) Accumulation of heavy metals and selenium in three seabird species from the United Kingdom. Environ Pollut 26:129–145

    Article  CAS  Google Scholar 

  • Hyvarinen H, Tyni P, Nieminen P (2003) Effects of moult, age, and sex on the accumulation of heavy metals in the otter (Lutra lutra) in Finland. Bull Environ Contam Toxicol 70:278–284

    Article  CAS  Google Scholar 

  • Jankovska I, Miholova D, Bejcek V, Vadlejch J, Sulc M, Szakova J et al (2010) Influence of parasitism on trace element contents in tissues of red fox (Vulpes vulpes) and its parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda). Arch Environ Contam Toxicol 8:469–477

    Article  CAS  Google Scholar 

  • Janssens E, Dauwe T, Bervoets L, Eens M (2001) Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ Toxicol Chem 20:2815–2820

    Article  CAS  Google Scholar 

  • Janssens E, Dauwe T, Bervoets L, Eens M (2002) Inter- and intraclutch variability in heavy metals in feathers of great tit nestlings (Parus major) along a pollution gradient. Arch Environ Contam Toxicol 43:323–329

    Article  CAS  Google Scholar 

  • Jarzynska G, Falandysz J (2011) Selenium and other 17 largely essential and toxic metals in muscle and organ meats of red deer (Cervus elaphus)—consequences to human health. Environ Int 37:882–888

    Article  CAS  Google Scholar 

  • Jaspers V, Dauwe T, Pinxten R, Bervoets L, Blust R, Eens M (2004) The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major. J Environ Monit 6:356–360

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, FL, p 365

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biogeochemistry of trace elements. PWN, Warsaw

    Google Scholar 

  • Kabata-Pendias A, Szteke B (2012) Trace elements in geo- and biosphere. Institute of Soil Science and Plant Cultivation, Pulawy, Poland

    Google Scholar 

  • Kalisinska E, Salicki W (2010) Lead and cadmium levels in muscle, liver and kidney of scaup Aythya marila from Szczecin Lagoon, Poland. Pol J Environ Stud 19:1213–1222

    CAS  Google Scholar 

  • Kalisinska E, Salicki W, Myslek P, Kavetska KM, Jackowski A (2004) Using the mallard to biomonitor heavy metal contamination of wetlands in north-western Poland. Sci Total Environ 320:145–161

    Article  CAS  Google Scholar 

  • Kalisinska E, Salicki W, Jackowski A (2006) Six trace metals in white-tailed eagle from northwestern Poland. Pol J Environ Stud 15:727–737

    CAS  Google Scholar 

  • Kalisinska E, Budis H, Wilk A, Lanocha N, Jackowski A (2009) Lead and cadmium in kidney and liver of nocturnal and diurnal raptors. Ochr Sr Zasobow Nat 41:102–110

    Google Scholar 

  • Kaminski P (1998) The impact of calcium and heavy metals upon the nest development of the tree sparrow (Passer montanus). Wyd. UMK, Toruń

    Google Scholar 

  • Kang S, Kang JH, Kim S, Lee SH, Lee S, Yu HJ et al (2015) Trace element analysis of three tissues from Eurasian otters (Lutra lutra) in South Korea. Ecotoxicology 24:1064–1072

    Article  CAS  Google Scholar 

  • Karpinski M (1999) Concentrations of selected macro- and microelements in the tissues of red deer (Cervus elaphus) and roe deer (Capreolus capreolus) from the central-eastern region of Poland. II. Annales UMCS sec EE Zootechnica 17:311–316

    Google Scholar 

  • Kekkonen J, Hanski IK, Vaisanen RA, Brommer JE (2012) Levels of heavy metals in House Sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fennica 89:91–98

    Google Scholar 

  • Kim J, Oh JM (2012) Metal levels in livers of waterfowl from Korea. Ecotoxicol Environ Saf 78:162–169

    Article  CAS  Google Scholar 

  • Kim J, Oh JM (2016) Assessment of trace element concentrations in birds of prey in Korea. Arch Environ Contam Toxicol 71:26–34

    Article  CAS  Google Scholar 

  • King JC (2000) Determinants of maternal zinc status during pregnancy. Am J Clin Nutr 71:1334S–1343S

    Article  CAS  Google Scholar 

  • Koivula MJ, Eeva T (2010) Metal-related oxidative stress in birds. Environ Pollut 158:2359–2370

    Article  CAS  Google Scholar 

  • Komosa A, Kitowski I, Komosa Z (2012) Essential trace (Zn, Cu, Mn) and toxic (Cd, Pb, Cr) elements in the liver of birds from Eastern Poland. Acta Vet (Beograd) 62:579–589

    Article  Google Scholar 

  • Kozulin A, Pavluschick T (1993) Content of heavy metals in tissues of mallards Anas platyrhynchos wintering in polluted and unpolluted habitats. Acta Ornithol 28:55–61

    Google Scholar 

  • Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. J Nutr 130:1374S–1377S

    Article  CAS  Google Scholar 

  • Kucharczak E, Moryl A (2010) Contents of metals in cultivated plants in Zgorzelec-Bogatynia region parts 2. Arsenic, chromium, zinc, copper. Ochr Środ i Zasob Natur 43:7–17

    Google Scholar 

  • Kucharczak E, Jopek Z, Moryl A (2003) Influence of environment on content of selected metals (Pb, Cd, Zn, Cu) in tissues of roes and wild pigs. Acta Sci Pol Med Vet 2:37–47

    Google Scholar 

  • Lamothe AR (1991) Winter food habits and foodchain transfer of metals in wolves, (Canis lupus) of the Keewatin District, Northwest Territories. M.Sc. Thesis, Laurentian University

    Google Scholar 

  • Lanszki J, Orosz E, Sugar L (2009) Metal levels in tissues of Eurasian otters (Lutra lutra) from Hungary: variation with sex, age, condition and location. Chemosphere 74:741–743

    Article  CAS  Google Scholar 

  • Lazarus M, Vickovic I, Sostaric B, Blanusai M (2005) Heavy metal levels in tissues of red deer (Cervus elaphus) from Eastern Croatia. Arh Hig Rada Toksikol 56:233–240

    CAS  Google Scholar 

  • Lazarus M, Orct T, Blanusa M, Vickovic I, Sostarić B (2008) Toxic and essential metal concentrations in four tissues of red deer (Cervus elaphus) from Baranja, Croatia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:270–283

    Article  CAS  Google Scholar 

  • Lech T, Gubala W (1996) Heavy metals in the liver and kidneys of roe-deer from the region of Cracow, 1996. Bromatol Chem Toksykol 31:287–290

    Google Scholar 

  • Leonard A, Gerber GB, Leonard F (1986) Mutagenicity, carcinogenicity and teratogenicity of zinc. Mutat Res 168:343–353

    Article  CAS  Google Scholar 

  • Lester MB, van Riper C 3rd (2014) The distribution and extent of heavy metal accumulation in song sparrows along Arizona’s upper Santa Cruz River. Environ Monit Assess 186:4779–4791

    Article  CAS  Google Scholar 

  • Levengood JM, Skowron LM (2007) Coaccumulation of cadmium and zinc in tissues of sentinel mallards (Anas platyrhynchos) using a former dredge-disposal impoundment. Arch Environ Contam Toxicol 53:281–286

    Article  CAS  Google Scholar 

  • Levengood JM, Sanderson GC, Anderson WL, Foley GL, Skowron LM, Brown PW et al (1999) Acute toxicity of ingested zinc shot to game-farm mallards. Bull Ill Nat Hist Surv 36:1–36

    Google Scholar 

  • Levengood JM, Lichtensteiger CA, Amdor BA (2002) Exposure to selected elements and health of Raccoons from Lake DePue, Illinois. Center for Wildlife Ecology, Illinois Natural History Survey

    Google Scholar 

  • Lewis LA, Poppenga RJ, Davidson WR, Fischer JR, Morgan KA (2001) Lead toxicosis and trace element levels in wild birds and mammals at a firearms training facility. Arch Environ Contam Toxicol 41:208–214

    Article  CAS  Google Scholar 

  • Licata P, Naccari F, Lo Turco V, Rando R, Di Bella G, Dugo G (2010) Levels of Cd (II), Mn (II), Pb (II), Cu (II), and Zn (II) in common buzzard (Buteo buteo) from Sicily (Italy) by derivative stripping potentiometry. Int J Ecol. https://doi.org/10.1155/2010/541948

    Article  Google Scholar 

  • Llacuna S, Gorriz A, Sanpera C, Nadal J (1995) Metal accumulation in three species of passerine birds (Emberiza cia, Parus major, and Turdus merula) subjected to air pollution from a coal-fired power plant. Arch Environ Contam Toxicol 28:298–303

    Article  CAS  Google Scholar 

  • Lodenius M, Skaren U, Hellstedt P, Tulisalo E (2014) Mercury in various tissues of three mustelid species and other trace metals in liver of European otter from Eastern Finland. Environ Monit Assess 186:325–333

    Article  CAS  Google Scholar 

  • Lonnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378S–1383S

    Article  CAS  Google Scholar 

  • Lopez-Alonso M, Benedito JL, Miranda M, Castillo C, HernĂĄndez J, Shore RF (2002) Cattle as biomonitors of soil arsenic, copper, and zinc concentrations in Galicia (NW Spain). Arch Environ Contam Toxicol 43:103–108

    Article  CAS  Google Scholar 

  • Lopez-Alonso M, Prieto Montana F, Miranda M, Castillo C, Hernandez J, Luis Benedito J (2004) Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals 17:389–397

    Article  Google Scholar 

  • Lovberg KL, Sivertsen T (1997) Uptake of elements from industrial air pollution in South Varanger reindeer – a follow up study. Research Report for Directorate for Nature Management. DN-rapport 1997

    Google Scholar 

  • Lu J, Combs GF Jr (1988) Effect of excess dietary zinc on pancreatic exocrine function in the chick. J Nutr 118:681–689

    Article  CAS  Google Scholar 

  • Lu J, Combs GF Jr, Fleet JC (1990) Time-course studies of pancreatic exocrine damage induced by excess dietary zinc in the chick. J Nutr 120:389–397

    Article  CAS  Google Scholar 

  • Lucia M, Andre JM, Bernadet MD, Gontier K, Gerard G, Davail S (2008) Concentrations of metals (zinc, copper, cadmium, and mercury) in three domestic ducks in France: Pekin, Muscovy, and Mule ducks. J Agric Food Chem 56:281–288

    Article  CAS  Google Scholar 

  • Lucia M, Andre JM, Gontier K, Diot N, Veiga J, Davail S (2010) Trace elements concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the Southwest Atlantic coast of France. Arch Environ Contam Toxicol 58:844–853

    Article  CAS  Google Scholar 

  • Lukaski HC (2005) Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise. Am J Clin Nutr 81:1045–1051

    Article  CAS  Google Scholar 

  • MacDonald CR, Elkin BT, Roach P, Gamberg M, Palmer M (2002) Inorganic elements in caribou in the Yukon, NWT, and Nunavut from 1992 to 2000: spatial and temporal trends and the effect of modifying factor. Unpublished manuscript prepared for the Northern Contaminants Program, Ottawa, ON, 32 pp

    Google Scholar 

  • Maita K, Hirano M, Mitsumori K, Takahashi K, Shirasu Y (1981) Subacute toxicity with zinc sulfate in mice and rats. J Pest Sci 6:327–336

    Article  CAS  Google Scholar 

  • Malle KG (1992) Zink in der Umwelt. Acta Hydrochim Hydrobiol 20:196–204

    Article  CAS  Google Scholar 

  • Manjula M, Mohanraj R, Devi MP (2015) Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ Monit Assess 187:267

    Article  CAS  Google Scholar 

  • Mason B, Moore CB (1982) Principles of geochemistry. John Wiley & Sons, New York

    Google Scholar 

  • Mason CF, Stephenson A (2001) Metals in tissues of European otters (Lutra lutra) from Denmark, Great Britain and Ireland. Chemosphere 44:351–353

    Article  CAS  Google Scholar 

  • Mateo R, Taggart MA, Green AJ, Cristofol C, Ramis A, Lefranc H et al (2006) Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, southwestern Spain. Environ Toxicol Chem 25:203–212

    Article  CAS  Google Scholar 

  • McCall KA, Huang C, Fierke CA (2000) Function and mechanism of zinc metalloenzymes. J Nutr 130:1437S–1446S

    Article  CAS  Google Scholar 

  • McCormick CC, Cunningham DL (1984) High dietary zinc and fasting as methods of forced resting: a performance comparison. Poult Sci 63:1201–1206

    Article  CAS  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  CAS  Google Scholar 

  • McDowell LR (2003) Minerals in animal and human nutrition, 2nd edn. Elsevier Science, Amsterdam, Netherlands, pp 357–396

    Book  Google Scholar 

  • McMahon RJ, Cousins RJ (1998) Mammalian zinc transporters. J Nutr 128:667–670

    Article  CAS  Google Scholar 

  • Medvedev N (1999) Levels of heavy metals in Karelian wildlife, 1989-91. Environ Monitor Assess 56:177–193

    Article  CAS  Google Scholar 

  • Merck VM (1986) The Merck veterinary manual, 6th edn. A handbook of diagnosis, therapy and disease prevention and control for the veterinarian. Merck and Co., Inc., Rahway, NJ

    Google Scholar 

  • Mertin D, Szeleszczuk O, Suvegova K, Niedbala P, Hanusova E (2006) Content of microelements in the selected organ s of raccoon dog (Nyctereutes procyonoides). Ecol Chem Eng 13:85–90

    CAS  Google Scholar 

  • Michalska K, Zmudzki J (1992) Metal concentrations in wild pig, roe and deer tissues of the Wielkopolska region. Med Wet 48:160–162

    Google Scholar 

  • Michot TC, Chadwick PC (1994) Winter biomass and nutrient values of three seagrass species as potential foods for redheads (Aythya americana Eyton) in Chandeleur Sound, Louisiana. Wetlands 14:276–283

    Article  Google Scholar 

  • Mikszewski JS, Saunders HM, Hess RS (2003) Zinc-associated acute pancreatitis in a dog. J Small Anim Pract 44:177–180

    Article  CAS  Google Scholar 

  • Millaku L, Imeri R, Trebnicka A (2015) Bioaccumulation of heavy metals in tissues of house sparrow (Passer domesticus). Res J Environ Toxicol 9:107–112

    Article  CAS  Google Scholar 

  • Millan J, Mateo R, Taggart MA, Lopez-Bao JV, Viota M, Monsalve L et al (2008) Levels of heavy metals and metalloids critically endangered Iberian lynx and other wild carnivores from Southern Spain. Sci Total Environ 399:193–201

    Article  CAS  Google Scholar 

  • Morera M, Sanpera C, Crespo S, Jover L, Ruiz X (1997) Inter- and intraclutch variability in heavy metals and selenium levels in Audouin’s gull eggs from the Ebro Delta, Spain. Arch Environ Contam Toxicol 33:71–75

    Article  CAS  Google Scholar 

  • Movalli PA (2000) Heavy metal and other residues in feathers of laggar falcon Falco biarmicus jugger from six districts of Pakistan. Environ Pollut 109:267–275

    Article  CAS  Google Scholar 

  • Mustafa I, Ghani A, Arif N, Asif S, Khan MR, Waqas A et al (2015) Comparative metal profiles in different organs of house sparrow (Passer domesticus) and black kite (Milvus migrans) in Sargodha District, Punjab, Pakistan. Pak J Zool 47:1103–1108

    CAS  Google Scholar 

  • Naccari C, Cristani M, Cimino F, Arcoraci T, Trombetta D (2009) Common buzzards (Buteo buteo) bio-indicators of heavy metals pollution in Sicily (Italy). Environ Int 35:594–598

    Article  CAS  Google Scholar 

  • Nam DH, Rutkiewicz J, Basu N (2012) Multiple metals exposure and neurotoxic risk in bald eagles (Haliaeetus leucocephalus) from two Great Lakes states. Environ Toxicol Chem 31:623–631

    Article  CAS  Google Scholar 

  • National Research Council (NRC) (2005) Mineral tolerance of animals, 2nd Rev edn. National Academic Press, Washington, DC

    Google Scholar 

  • Niecke M, Heid M, Kruger A (1999) Correlations between melanin pigmentation and element concentration in feathers of white-tailed eagles (Haliaeetus albicilla). J Ornithol 140:355–362

    Article  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Nyholm NE (1998) Influence of heavy metal exposure during different phases of the ontogenyon the development of Pied Flycatcher, Ficedula hypoleuca, in natural populations. Arch Environ Contam Toxicol 35:632–637

    Article  CAS  Google Scholar 

  • O’Hara TM, George JC, Blake J, Burek K, Carroll G, Dau J et al (2003) Investigation of heavy metals in a large mortality event in caribou of northern Alaska. Arctic 56:125–135

    Google Scholar 

  • Oberleas D, Harland BF (2008) Treatment of zinc deficiency without zinc fortification. J Zhejiang Univ Sci B 9:192–196

    Article  CAS  Google Scholar 

  • Ogden L, Edwards WC, Nail NA (1988) Zinc intoxication in a dog from the ingestion of copper-clad zinc pennies. Vet Hum Toxicol 30:577–578

    CAS  Google Scholar 

  • Ogle MC, Scanlon PF, Kirkpatrick RL, Gwynn JV (1985) Heavy metal concentrations in tissues of mink in Virginia. Bull Environ Contam Toxicol 35:29–37

    Article  CAS  Google Scholar 

  • Ohr KM, Bragg TB (1985) Effect of fire on nutrient and energy concentration of five prairie grass species. Prairie Nat 17:113–126

    Google Scholar 

  • Orlowski G, Kaminski P, Kasprzykowski Z, Zawada Z, Koim-Puchowska B, Szady-Grad M et al (2012) Essential and nonessential elements in nestling rooks Corvus frugilegus from eastern Poland with a special emphasis on their high cadmium contamination. Arch Environ Contam Toxicol 63:601–611

    Article  CAS  Google Scholar 

  • Outridge PM, Noller BN (1991) Accumulation of toxic trace elements by freshwater vascular plants. Rev Environ Contam Toxicol 121:1–63

    CAS  Google Scholar 

  • Pacyna JM, Pacyna E (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9:269–298

    Article  CAS  Google Scholar 

  • Pahlsson AM (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants: a literature review. Water Air Soil Pollut 47:287–319

    Article  Google Scholar 

  • Parker GH, Hamr J (2001) Metal levels in body tissues, forage and fecal pellets of elk (Cervus elaphus) living near the ore smelters at Sudbury, Ontario. Environ Pollut 113:347–355

    Article  CAS  Google Scholar 

  • Parrish JR, Rogers DT Jr, Ward FP (1983) Identification of natal locales of Peregrine Falcons (Falco peregrinus) by trace element analysis of feathers. Auk 100:560–567

    Google Scholar 

  • Parslow J (1982) Heavy metals in the livers of waterfowl from the Ouse Washes, England. Environ Pollut 29:317–327

    Article  CAS  Google Scholar 

  • Perez-Lopez M, Hermoso de Mendoza M, Lopez Beceiro A, Soler RodrĂ­guez F (2008) Heavy metal (Cd, Pb, Zn) and metalloid (As) content in raptor species from Galicia (NW Spain). Ecotoxicol Environ Saf 70:154–162

    Article  CAS  Google Scholar 

  • Perez-Lopez M, RodrĂ­guez FS, Hernandez-Moreno D, Rigueira L, Luis Eusebio Fidalgo LE, Lopez Beceiro A (2016) Bioaccumulation of cadmium, lead and zinc in liver and kidney of red fox (Vulpes vulpes) from NW Spain: influence of gender and age. Toxicol Environ Chem 98:109–117

    Article  CAS  Google Scholar 

  • Pillatzki AE, Neiger RD, Chipps SR, Higgins KF, Thiex N, Afton AD (2011) Hepatic element concentrations of lesser scaup (Aythya affinis) during spring migration in the upper Midwest. Arch Environ Contam Toxicol 61:144–150

    Article  CAS  Google Scholar 

  • Pokorny B (2000) Roe deer Capreolus capreolus as an accumulative bioindicator of heavy metals in Slovenia. Roe deer Capreolus capreolus as an accumulative bioindicator of heavy metals in Slovenia. Web Ecol 1:54–62

    Article  Google Scholar 

  • Pokorny B, Ribaric-Lasnik C (2000) Lead, cadmium, and zinc in tissues of roe deer (Capreolus capreolus) near the lead smelter in the Koroska region (northern Slovenia). Bull Environ Contam Toxicol 64:20–26

    Article  CAS  Google Scholar 

  • Pollock B (2005) Trace elements status of white-tailed deer (Odocoileus virginianus) and moose (Alces alces) in Nova Scotia. Canadian Cooperative Wildlife Health Centre: Newsletters & Publications. Paper 45

  • Prasad AS, Rabbani P, Warth JA (1979) Effect of zinc on hyperammonemia in sickle cell anemia subjects. Am J Hematol 7:323–327

    Article  CAS  Google Scholar 

  • Prestrud P, Norheim G, Sivertsen T, Daae HL (1994) Levels of toxic and essential elements in arctic fox in Svalbard. Polar Biol 14:155–159

    Article  Google Scholar 

  • Puls R (1994) Mineral levels in animal health: diagnostic data. Sherpa International, Clearbrook, Canada

    Google Scholar 

  • Puschner B, St Leger J, Galey FD (1999) Normal and toxic zinc concentrations in serum/plasma and liver of psittacines with respect to genus differences. J Vet Diagn Invest 11:522–527

    Article  CAS  Google Scholar 

  • Radostits OM, Gay CC, Blood DC, Hinchliff KW (2007) Veterinary medicine. In: Saunders WB (ed) A textbook of the diseases of cattle, sheep, goats and horses, 10th edn. WB Saunders Co., pp 1730–1733

    Google Scholar 

  • Rauch JN, Pacyna M (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Geochemical Cycles 23:1–16

    Article  CAS  Google Scholar 

  • Reglero MM, Monsalve-Gonzalez L, Taggart MA, Mateo R (2008) Transfer of metals to plants and red deer in an old lead mining area in Spain. Sci Total Environ 406:287–297

    Article  CAS  Google Scholar 

  • Reglero MM, Taggart MA, Monsalve-Gonzalez L, Mateo R (2009) Heavy metal exposure in large game from a lead mining area: effects on oxidative stress and fatty acid composition in liver. Environ Pollut 157:1388–1395

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (1998) Chemical elements in the environment—factsheets for the geochemist and environmental scientist. Germany Springer-Verlag, Berlin

    Google Scholar 

  • Richards MP, Steel NC (1987) Trace element metabolism in thedeveloping avian embryo: a review. J Exp Zool Supp 1:39–51

    CAS  Google Scholar 

  • Robinette CL (1990) Toxicology of selected pesticides, drugs, and chemicals. Zinc. Vet Clin North Am Small Anim Pract 20:539–544

    Article  CAS  Google Scholar 

  • Roslewska A, Stanek M, Janicki B, Cygan-Szczegielniak D, Stasiak K, Buzala M (2016) Effect of sex on the content of elements in meat from wild boars (Sus scrofa L.) originating from the province of podkarpacie (south-eastern Poland). J Elem 21:823–832

    Google Scholar 

  • Roug A, Swift PK, Gerstenberg G, Woods LW, Kreuder-Johnson C, Torres SG et al (2015) Comparison of trace mineral concentrations in tail hair, body hair, blood, and liver of mule deer (Odocoileus hemionus) in California. J Vet Diagn Invest 27:295–305

    Article  CAS  Google Scholar 

  • Sawicka-Kapusta K, Kozlowski J, Sokolowska T (1986) Heavy metal in tits from polluted forests in Southern Poland. Environ Pollut A 42:297e310

    Article  Google Scholar 

  • Scanlon PF, Oderwald RG, Dietrick TJ, Coggin JL (1980) Heavy metal concentrations in feathers of ruffed grouse shot by Virginia hunters. Bull Environ Contam Toxicol 25:947–949

    Article  CAS  Google Scholar 

  • Schenker MB, Speizer FE, Taylor JO (1981) Acute upper respiratory symptoms resulting from exposure to zinc chloride aerosol. Environ Res 25:317–324

    Article  CAS  Google Scholar 

  • Scott BJ, Bradwell AR (1983) Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 29:629–633

    CAS  Google Scholar 

  • Semrad CE (1999) Zinc and intestinal function. Curr Gastroenterol Rep 1:398–403

    Article  CAS  Google Scholar 

  • Senczuk W (2006) Modern toxicology. PZWL, Warsaw

    Google Scholar 

  • Sileo L, Beyer WN (1985) Heavy metals in white-tailed deer living near a zinc smelter in Pennsylvania. J Wildl Dis 21:289–296

    Article  CAS  Google Scholar 

  • Sileo L, Nelson Beyer W, Mateo R (2003) Pancreatitis in wild zinc-poisoned waterfowl. Avian Pathol 32:655–660

    Article  CAS  Google Scholar 

  • Sillanpaa M (1982) Micronutrients and the nutrient status of soils: a global study. FAO Soils Bulletin No. 48, FAO, Rome

    Google Scholar 

  • Sinka-Karimi MH, Pourkhabbaz AR, Hassanpour M, Levengood JM (2015) Study on metal concentrations in tissues of mallard and pochard from two major wintering sites in southeastern Caspian Sea, Iran. Bull Environ Contam Toxicol 95:292–297

    Article  CAS  Google Scholar 

  • Sivertsen T, Daae HL, Godal A, Sand G (1995) Ruminant uptake of nickel and other elements from industrial air pollution in the Norwegian-Russian border area. Environ Pollut 90:75–81

    Article  CAS  Google Scholar 

  • Skaren U (1992) Analysis of one hundred otters killed by accidents in central Finland. IUCN Otter Spec Group Bull 7:9–12

    Google Scholar 

  • Skibniewski M, Skibniewska EM, Kosla T (2015) The content of selected metals in muscles of the red deer (Cervus elaphus) from Poland. Environ Sci Pollut Res Int 22:8425–8431

    Article  CAS  Google Scholar 

  • Skjelseth S, Ringsby TH, Tufto J, Jensen H, Saether BE (2007) Dispersal of introduced house sparrows Passer domesticus: an experiment. Proc Biol Sci 274:1763–1771

    Article  Google Scholar 

  • Skobrak EB, Bodnar K, Jonas EM, Gundel J, Javor A (2011) The comparison analysis of the main chemical composition parameters of wild boar meat and pork. Anim Sci Biotechnol 44:105A

    Google Scholar 

  • Sleeman JM, Magura K, Howell J, Rohm J, Murphy LA (2010) Hepatic mineral values of white-tailed deer (Odocoileus virginianus) from Virginia. J Wildl Dis 46:525–531

    Article  CAS  Google Scholar 

  • Smrcka V (2005) Trace elements in bone tissue. Charles University in Prague. The Karolinum Press, Prague

    Google Scholar 

  • Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4:200–222

    CAS  Google Scholar 

  • Solonen T, Lodenius M, Tulisalo E (1999) Metal levels of feathers in birds of various food chains in southern Finland. Ornis Fennica 76:25–32

    Google Scholar 

  • Souza MJ, Ramsay EC, Donnell RL (2013) Metal accumulation and health effects in raccoons (Procyon lotor) associated with coal fly ash exposure. Arch Environ Contam Toxicol 64:529–536

    Article  CAS  Google Scholar 

  • Spears JW (1994) Minerals in forages. In: Fahey GC (ed) Forage quality, evaluation, and utilization. American Society of Agronomy, Inc., Madison, WI, p 281

    Google Scholar 

  • Stahl JL, Greger JL, Cook ME (1989) Zinc, copper and iron utilisation by chicks fed various concentrations of zinc. Br Poult Sci 30:123–134

    Article  CAS  Google Scholar 

  • Stejskal SM, Aulerich RJ, Slanker MR, Braselton WE, Lehning EJ, Napolitano AC (1989) Element concentrations in livers and kidneys of ranch mink. J Vet Diagn Invest 1:343–348

    Article  CAS  Google Scholar 

  • Stone M, Marsalek J (1999) Trace metal composition and spetiation in street sediment. Water Air Soil Pollut 87:149–169

    Article  Google Scholar 

  • Stout JH, Trust KA (2002) Elemental and organochlorine residues in bald eagles from Adak Island, Alaska. J Wildl Dis 38:511–517

    Article  CAS  Google Scholar 

  • Sundaramahalingam B, Baskaran S, Pandiarajan J (2016) An opportunistic evaluation of heavy metal accumulation in house sparrow (Passer domesticus). Res Rev Res J Biol 4:38–41

    Google Scholar 

  • Suvegova K, Mertin D, Sviatko E, Oravcova E (1993) Content of some mineral elements in chosen organs of silver foxes (Vulper vulper). Scientifur 17:257–262

    Google Scholar 

  • Swaileh KM, Sansur R (2006) Monitoring urban heavy metal pollution using the House Sparrow (Passer domesticus). J Environ Monit 8:209–213

    Article  CAS  Google Scholar 

  • Swiergosz R, Perzanowski K, Makosz U, Bilek I (1993) The incidence of heavy metals and other toxic elements in big game tissues. Sci Total Environ Suppl Pt 1:225–231

    Article  Google Scholar 

  • Szymczyk K, Zalewski K (2003) Copper, zinc, lead and cadmium content in liver and muscles of Mallards (Anas platyrhynchos) and other hunting fowl species in Warmia and Mazury in 1999-2000. Pol J Environ Stud 12:381–386

    CAS  Google Scholar 

  • Taggart MA, Figuerola J, Green AJ, Mateo R, Deacon C, Osborn D et al (2006) After the AznalcĂłllar mine spill: arsenic, zinc, selenium, lead and copper levels in the livers and bones of five waterfowl species. Environ Res 100:349–361

    Article  CAS  Google Scholar 

  • Tapeiro H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    Article  CAS  Google Scholar 

  • US EPA (1980) Ambient water quality criteria for zinc. Prepared by the Office of Water Regulations and Standards, Washington, DC. EPA 440/5-80-079

    Google Scholar 

  • US Geological Survey (2010) The preliminary determination of epicenters (PDE) bulletin: U.S. Geological Survey Earthquake Hazards Program, http://earthquake.usgs.gov/research/data/pde.php. Accessed 1 Mar 2012

  • US Public Health Service (PHS) (1989) Toxicological profile for zinc. U.S. Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA, p 121

    Google Scholar 

  • Vahter M, Akesson A, Liden C, Ceccatelli S, Berglund M (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104:85–95

    Article  CAS  Google Scholar 

  • van der Merwe D, Carpenter JW, Nietfeld JC, Miesner JF (2011) Adverse health effects in Canada geese (Branta canadensis) associated with waste from zinc and lead mines in the Tri-State Mining District (Kansas, Oklahoma, and Missouri, USA). J Wildl Dis 47:650–660

    Article  Google Scholar 

  • van Riet MM, Millet S, Nalon E, Langendries KC, Cools A, Ampe B et al (2015) Fluctuation of potential zinc status biomarkers throughout a reproductive cycle of primiparous and multiparous sows. Br J Nutr 114:544–552

    Article  CAS  Google Scholar 

  • Venalainen ER (2007) The levels of heavy metals in moose, reindeer and hares in Finland – results of twenty years monitoring. Academic Dissertation, Faculty of Natural and Environmental Sciences, University of Kuopio, Finland

    Google Scholar 

  • Vernadsky WI (1945) The biosphere and the noĂśsphere. Am Sci 33:1–12

    Google Scholar 

  • Vikoren T, Kristoffersen AB, Lierhagen S, Handeland K (2011) A comparative study of hepatic trace element levels in wild moose, roe deer, and reindeer from Norway. J Wildl Dis 47:661–672

    Article  Google Scholar 

  • VROM (Dutch Ministry of Housing, Spatial Planning and the Environment) (2012) Soil Remediation Circular 2009. Staatscourant 3 April 2012, Nr. 6563. Ministry of Housing, Spatial Planning and the Environment, The Hague

    Google Scholar 

  • Walker LA, Lawlor AJ, Chadwick EA, Potter E, Pereira MG, Shore RF (2011) Inorganic elements in the livers of eurasian otters, Lutra lutra, from England and Wales in 2009 – a Predatory Bird Monitoring Scheme (PBMS) Report. Centre for Ecology & Hydrology, Lancaster, UK. http://nora.nerc.ac.uk/14176/1/PBMS_Metals_Otters_2009.pdf. Accessed 25 Feb 2016

  • Walsh PM (1990) The use of seabirds as monitors of heavy metals in the marine environment. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, New York, p 256

    Google Scholar 

  • Wentink GH, Spierenburg TJ, de Graaf GJ, van Exsel AC (1985) A case of chronic zinc poisoning in calves fed with zinc-contaminated roughage. Vet Q 7:153–157

    Article  CAS  Google Scholar 

  • Wenzel C, Adelung D, Theede H (1996) Distribution and age-related changes of trace elements in kittiwake Rissa tridactyla nestlings from an isolated colony in the German Bight, North Sea. Sci Total Environ 193:13–26

    Article  CAS  Google Scholar 

  • Wiemeyer SN, Lamont TG, Locke LN (1980) Residues of environmental pollutants and necropsy data for eastern United States ospreys, 1964-1973. Estuaries 3:155–167

    Article  CAS  Google Scholar 

  • Wiemeyer SN, Schmeling SK, Anderson A (1987) Environmental pollutant and necropsy data for ospreys from the eastern United States, 1975-1982. J Wildl Dis 23:279–291

    Article  CAS  Google Scholar 

  • Wolkers H, Wensing T, Groot Bruinderink GW (1994) Heavy metal contamination in organs of red deer (Cervus elaphus) and wild boar (Sus scrofa) and the effect on some trace elements. Sci Total Environ 144:191–199

    Article  CAS  Google Scholar 

  • Woolf A, Smith JR, Small L (1982) Metals in livers of white-tailed deer in Illinois. Bull Environ Contam Toxicol 28:189–194

    Article  CAS  Google Scholar 

  • Wren CD (1984) Distribution of metals in tissues of beaver, raccoon, and otter from Ontario, Canada. Sci Total Environ 34:177–184

    Article  CAS  Google Scholar 

  • WVDL (2015) Normal range values for WVDL toxicology. www.wvdl.wisc.edu/wp-content/uploads/2013/06/WVDL.Info_. Toxicology_Normal_Ranges.pdf. Accessed 28 Apr 2015

  • Zaccaroni A, Niccoli C, Andreani G, Scaravelli D, Ferrante MC, Lucisano A et al (2011) Trace metal concentration in wild avian species from Campania, Italy. Cent Eur J Chem 9:86–93

    CAS  Google Scholar 

  • Zimmerman TJ, Jenks JA, Leslie DM, Neiger RD (2008) Hepatic minerals of white-tailed and mule deer in the southern Black Hills, South Dakota. J Wildl Dis 44:341–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta I. Kosik-Bogacka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosik-Bogacka, D.I., Łanocha-Arendarczyk, N. (2019). Zinc, Zn. In: Kalisińska, E. (eds) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-00121-6_11

Download citation

Publish with us

Policies and ethics