Skip to main content

Neuronal Current Imaging with Ultralow-Field NMR Techniques

  • Reference work entry
  • First Online:
Magnetoencephalography

Abstract

Neuronal current imaging (NCI) aims at detecting the influence of neuronal magnetic fields on an NMR signal which might be easier at ultralow fields (∼μT) than at high fields (∼T). In the so-called DC effect, long-lived neuronal activity shifts the Larmor frequency of the surrounding protons and changes the NMR line shape. An alternative strategy is to use fast neuronal activity as a tipping pulse. This so-called AC effect requires the proton Larmor frequency to match the frequency of the neuronal activity. Phantom studies validating both principal working mechanisms are described assessing the feasibility of NCI at ultralow fields. MRI on phantoms taken at Larmor frequencies of 100 and 731 Hz are also shown and discussed in an attempt to combine the AC effect and ULF MRI. These frequencies are examples of brain activity triggered by electrostimulation of the median nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Burghoff M, Albrecht HH, Hartwig S, Hilschenz I, Körber R, Höfner N, Scheer HJ, Voigt J, Trahms L, Curio G (2010) On the feasibility of neurocurrent imaging by low-field nuclear magnetic resonance. Appl Phys Lett 96:233701

    Article  Google Scholar 

  • Cassará A, Maraviglia B, Hartwig S, Trahms L, Burghoff M (2009) Neuronal current detection with low-field magnetic resonance: simulations and methods. Magn Reson Imaging 27:1131–1139

    Article  Google Scholar 

  • Clarke J, Hatridge M, Mößle M (2007) SQUID-detected magnetic resonance imaging in microtesla fields. Annu Rev Biomed Eng 9:389–413

    Article  CAS  Google Scholar 

  • Drung D (2003) High- TC and low- TC dc SQUID electronics. Semicond Sci Technol 16:1320–1336

    CAS  Google Scholar 

  • Drung D, Aßmann C, Beyer J, Kirste A, Peters M, Ruede F, Schurig T (2007) Highly sensitive and easy-to-use SQUID sensors. IEEE Trans Appl Supercond 17:699–704

    Article  CAS  Google Scholar 

  • Goense J, Logothetis N (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640

    Article  CAS  Google Scholar 

  • Hagberg G, Bianciardi M, Maraviglia B (2006) Challenges for detection of neuronal currents by MRI. Magn Reson Imaging 24:483–493

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Hilschenz I, Körber R, Scheer HJ, Fedele T, Albrecht HH, Cassará AM, Hartwig S, Trahms L, Haase J, Burghoff M (2013) Magnetic resonance imaging at frequencies below 1 kHz. Magn Reson Imaging 31:171–177

    Article  Google Scholar 

  • Höfner N, Albrecht HH, Cassará AM, Curio G, Hartwig S, Haueisen J, Hilschenz I, Körber R, Martens S, Scheer HJ, Voigt J, Trahms L, Burghoff M (2011) Are brain currents detectable by means of low-field NMR? A phantom study. Magn Reson Imaging 29:1365–1373

    Article  Google Scholar 

  • Körber R, Curio G, Hartwig S, Hilschenz I, Höfner N, Scheer HJ, Trahms L, Voigt J, Burghoff M (2011) Simultaneous measurements of somatosensory evoked AC and near-DC MEG signals. Biomed Tech 56:91–97

    Article  Google Scholar 

  • Kraus RH, Volegov P, Matlachov A, Espy M (2007) Toward direct neuronal current imaging by resonant mechanisms at ultra-low field. NeuroImage 39:310–317

    Article  Google Scholar 

  • Magnelind P, Gomez J, Matlashov A, Owens T, Sandin J, Volegov P, Espy M (2011) Co-registration of interleaved MEG and ULF MRI using a 7 channel low- TC SQUID system. IEEE Trans Appl Supercond 21:456–460

    Article  CAS  Google Scholar 

  • Seton H, Hutchinson J, Bussel D (1997) A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm. Meas Sci Technol 8:198–207

    Article  CAS  Google Scholar 

  • Vesanen P, Nieminen J, Zevenhoven K, Dabek J, Parkkonen L, Zhdanov A, Luomahaara J, Hassel J, Penttilä J, Simola J, Ahonen A, Mäkelä J, Ilmoniemi R (2013) Hybrid ultra-low-field MRI and magnetoencephalography system based on a commercial whole-head neuromagnetometer. Magn Reson Med 69:1795–1804

    Article  Google Scholar 

  • Zotev V, Matlashov A, Volegov P, Urbaitis A, Espy M, Kraus R (2007) SQUID-based instrumentation for ultralow-field MRI. Supercond Sci Technol 20:S367–S373

    Article  CAS  Google Scholar 

  • Zotev V, Matlashov A, Volegov P, Savukov I, Espy M, Mosher J, Gomez J, Kraus R (2008) Microtesla MRI of the human brain combined with MEG. J Magn Reson 194:115–120

    Article  CAS  Google Scholar 

  • Zotev V, Matlashov A, Savukov I, Owens T, Volegov P, Gomez J, Espy M (2009) SQUID based microtesla MRI for in vivo relaxometry of the human brain. IEEE Trans Appl Supercond 19:823–826

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Ministry of Education and Research of Germany, Bernstein Focus Neurotechnology (grant number 01GQ0852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Körber .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Körber, R., Burghoff, M., Trahms, L. (2019). Neuronal Current Imaging with Ultralow-Field NMR Techniques. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-00087-5_47

Download citation

Publish with us

Policies and ethics