Skip to main content

Life, Intelligence, and the Selection of Universes

  • Conference paper
  • First Online:
Evolution, Development and Complexity

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Complexity and life as we know it depend crucially on the laws and constants of nature as well as the boundary conditions, which seem at least partly “fine-tuned.” That deserves an explanation: Why are they the way they are?

This essay discusses and systematizes the main options for answering these foundational questions. Fine-tuning might just be an illusion, or a result of irreducible chance, or nonexistent because nature could not have been otherwise (which might be shown within a fundamental theory if some constants or laws could be reduced to boundary conditions or boundary conditions to laws), or it might be a product of selection: either observational selection (weak anthropic principle) within a vast multiverse of many different realizations of physical parameters, or a kind of cosmological natural selection making the measured parameter values quite likely within a multiverse of many different values, or even a teleological or intentional selection or a coevolutionary development, depending on a more or less goal-directed participatory contribution of life and intelligence.

In contrast to observational selection, which is not predictive, an observer-independent selection mechanism must generate unequal reproduction rates of universes, a peaked probability distribution, or another kind of differential frequency, resulting in a stronger explanatory power. The hypothesis of Cosmological Artificial Selection (CAS) even suggests that our universe may be a vast computer simulation or could have been created and transcended by one. If so, this would be a far-reaching answer – within a naturalistic framework! – of fundamental questions such as: Why did the big bang and fine-tunings occur, what is the role of intelligence in the universe, and how can it escape cosmic doomsday?

This essay critically discusses some of the premises and implications of CAS and related problems, both with the proposal itself and its possible physical realization: Does CAS deserve to be considered as a convincing explanation of cosmic fine-tuning? Is life incidental, or does CAS revalue it? And are life and intelligence ultimately doomed, or might CAS rescue them?

Many worlds might have been botched and bungled, throughout an eternity, ’ere this system was struck out. Much labour lost: Many fruitless trials made: And a slow, but continued improvement carried out during infinite ages in the art of world-making.

—David Hume (1779)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre, A. (2001): The Cold Big-Bang Cosmology as a Counter-example to Several Anthropic Arguments. Phys. Rev. D 64, 083508; arXiv:astro-ph/0106143

    Google Scholar 

  • Aguirre, A. (2007): Eternal Inflation, past and future; arXiv:0712.0571

    Google Scholar 

  • Ansoldi, S., Guendelman, E. I. (2006): Child Universes in the Laboratory; arXiv:gr-qc/0611034

    Google Scholar 

  • Ansoldi, S., Guendelman, E. I. (2008): Universes out of almost empty space. Prog. Theor. Phys. 120, 985–993; arXiv:0706.1233

    Google Scholar 

  • Baláz, B. A. (2005): The cosmological replication cycle, the extraterrestrial paradigm and the final anthropic principle. Diotima 33, 44–53.

    Google Scholar 

  • Barnes, L. A. (2012): The fine-tuning of the universe for intelligent life. Publications of the Astron. Soc. of Australia 29, 529–564; arXiv:1112.4647

    Google Scholar 

  • Barrabès, C., Frolov, V. P. (1996): How many new worlds are inside a black hole? Phys. Rev. D 53, 3215–3223; arXiv:hep-th/9511136

    Google Scholar 

  • Barrow, J. D. (1998): Impossibility: The Limits of Science and the Science of Limits. Oxford University Press: Oxford.

    Google Scholar 

  • Barrow, J., Tipler, F. (1986): The Anthropic Cosmological Principle. Oxford University Press: Oxford.

    Google Scholar 

  • Barrow, J. D., et al. (eds.) (2008): Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning. Cambridge University Press: Cambridge.

    Google Scholar 

  • Borde, A., Ford, L. H., Roman, T. A. (2002): Constraints on Spatial distributions of Negative Energy. Phys. Rev. D 65, 084002; arXiv:gr-qc/0109061

    Google Scholar 

  • Borde, A., Trodden, M., Vachaspati, T. (1999): Creation and Structure of Baby Universes in Monopole Collisions. Phys. Rev. D 59, 043513; arXiv:gr-qc/9808069

    Google Scholar 

  • Bostrom, N. (2002): Anthropic Bias. Routledge: New York, London.

    Google Scholar 

  • Bostrom, N. (2003): Are We Living in a Computer Simulation? Phil. Quart. 53, 243–255.

    Article  Google Scholar 

  • Byl, J. (1996): On the natural selection of universes. Quart. J. Royal Astron. Soc. 37, 369–371.

    ADS  Google Scholar 

  • Byrne, P. (1989): Natural religion and the nature of religion. Routledge: London.

    Google Scholar 

  • Callender, C. (2004): Measures, explanation and the past: should ‘Special’ initial conditions be explained? British J. Phil. Sci. 55, 195–217.

    Google Scholar 

  • Calmet, X., Carr, B., Winstanley, E. (2014): Quantum Black Holes. Springer: Heidelberg.

    Book  MATH  Google Scholar 

  • Carr, B. (2007): The Anthropic Principle Revisited. In: Carr, B. (ed.) (2007): The Universe or Multiverse? Cambridge University Press: Cambridge, pp. 77–89.

    Google Scholar 

  • Carr, B. J., et al. (2010): New cosmological constraints on primordial black holes. Phys. Rev. D 81, 104019; arXiv:0912.5297

    Google Scholar 

  • Chaisson, J. (2001): Cosmic Evolution: The Rise of Complexity in Nature. Harvard University Press: Cambridge.

    Google Scholar 

  • Chaisson, E. J. (2011): Energy rate density as a complexity metric and evolutionary driver. Complexity 16 (3), 27–40; https://www.cfa.harvard.edu/~ejchaisson/reprints/EnergyRateDensity_I_FINAL_2011.pdf

    Article  Google Scholar 

  • Chaitin, G. (1987): Algorithmic Information Theory. Cambridge University Press: Cambridge.

    Book  MATH  Google Scholar 

  • Chaitin, G. (1992): Information-theoretic Incompleteness. World Scientific: Singapore.

    Book  MATH  Google Scholar 

  • Chaitin, G. (2001): Exploring Randomness. Springer: London.

    Book  MATH  Google Scholar 

  • Ćirković, M. M., Bostrom, N. (2000): Cosmological constant and the final anthropic hypothesis. Astrophys. Space Sci. 274, 675–687.

    Article  ADS  MATH  Google Scholar 

  • Ćirković, M. M. (2003): Resource letter: PEs-1: physical eschatology. Am. J. Phys. 71, 122–133; arXiv:astro-ph/0211413

    Google Scholar 

  • Ćirković, M. M. (2004): Forecast for the Next Eon: Applied Cosmology and the Long-Term Fate of Intelligent Beings. Found. Phys. 34, 239–261; arXiv:astro-ph/0211414

    Google Scholar 

  • Ćirković, M. M., Dimitrijević, J. (2018): Putting the Cart Before the Horse: Co-evolution of the Universe and Observers as an Explanatory Hypothesis. Found. Sci. 23 (3), 427–442.

    Google Scholar 

  • Clifton, T., Linde, A., Sivanandam, N. (2007): Islands in the landscape. JHEP 0702, 024; arXiv:hep-th/0701083

    Google Scholar 

  • Crane, L. (1994/2010): Possible Implications of the Quantum Theory of Gravity: An Introduction to the Meduso-Anthropic Principle. Found. Sci. 15, 369–373; arXiv:hep-th/9402104

    Google Scholar 

  • Davidson, D. (2001): Essays on Actions and Events. Oxford University Press: Oxford.

    Book  Google Scholar 

  • Davies, P. C. W. (2006): The Goldilocks Enigma: Why Is the Universe Just Right for Life? Allen Lane: London.

    Google Scholar 

  • Davies, P. (2007): Universes galore: where will it all end? In: Carr, B. (ed.) (2007): The Universe or Multiverse? Cambridge University Press: Cambridge, pp. 487–505.

    Google Scholar 

  • de Chardin, P. T.(1955): The phenomenon of man. Harper & Row: New York 2008.

    Google Scholar 

  • Dennett, C. (1995): Darwin’s Dangerous Idea. Simon & Schuster: New York.

    Google Scholar 

  • Dick, S. J. (2000): Cosmotheology: Theological implications of the new universe. In: Dick, S. J. (ed.) (2000): Many Worlds. The New Universe, Extraterrestrial Life and the Theological Implications. Templeton Foundation Press: Philadelphia, London, pp. 191–210.

    Google Scholar 

  • Dick, S. J. (2003): Cultural Evolution, the Postbiological Universe, and SETI. Int. J. Astrobiol. 2, 65–74; http://history.nasa.gov/SP-4802.pdf

  • Dick, S. J. (2008): The Postbiological Universe. Acta Astronautica 62, 499–504.

    Article  ADS  Google Scholar 

  • Dick, S. J. (2009): The Postbiological Universe and our Future in Space. Futures 41, 578–580.

    Article  Google Scholar 

  • Duff, M. J., Okun, L. B., Veneziano, G. (2002): Trialogue on the number of fundamental constants. JHEP 0203, 023; arXiv:physics/0110060

    Google Scholar 

  • Ellis, G. F. R., Brundrit, G. B. (1979): Life in the infinite universe. Quart. J. Royal Astron. Soc. 20, 37–41.

    ADS  Google Scholar 

  • Ellis, G. (1997): A Darwinian universe? Nature 387, 671–672.

    Article  ADS  Google Scholar 

  • Ellis, G. F. R. (2015): Recognising top-down causation. In: Aguirre, A., et al. (eds.) (2015): Questioning the foundations of physics. Springer: Heidelberg, pp. 17–44.

    Google Scholar 

  • Farhi, E., Guth, A. H. (1987): An obstacle to creating a universe in the laboratory. Phys. Lett. B 183, 149–155.

    Article  ADS  Google Scholar 

  • Farhi, E., Guth, A. H., Guven, J. (1990): Is it possible to create a universe in the laboratory by quantum tunnelling? Nucl. Phys B 339, 417–490.

    Google Scholar 

  • Fedrowa, J. M., Griest, K. (2014): Anti-anthropic solutions to the cosmic coincidence problem. JCAP 01, 004; arXiv:1309.0849

    Google Scholar 

  • Fischler, W., Morgan, D., Polchinski, J. (1990): Quantum nucleation of false-vacuum bubbles. Phys. Rev. D 41, 2638–2641.

    Article  ADS  Google Scholar 

  • Ford, L. H., Roman, T. A. (1997): Restrictions on Negative Energy Density in Flat Spacetime. Phys. Rev. D 55, 2082–2089; arXiv:gr-qc/9607003

    Google Scholar 

  • Ford, L. H., Helfer, A. D., Roman, T. A. (2002): Spatially Averaged Quantum Inequalities Do Not Exist in Four-Dimensional Spacetime. Phys. Rev. D 66, 124012; arXiv:gr-qc/0208045

    Google Scholar 

  • Frolov, V. P., Markov, M. A., Mukhanov, M. A. (1989): Through a black hole into a new universe? Phys. Lett. B 216, 272–276.

    Article  ADS  MathSciNet  Google Scholar 

  • Fuller, R. B. (1969): Utopia Or Oblivion: The Prospects for Humanity. Overlook Press: New York.

    Google Scholar 

  • García-Bellido, J. (1995): Quantum Diffusion of Planck Mass and the Evolution of the Universe. In: Occhionero, F. (ed.) (1995): Birth of the Universe and Fundamental Physics. Lecture Notes in Physics 455. Springer: Berlin, pp. 115–120; arXiv:astro-ph/9407087

    Google Scholar 

  • García-Bellido, J. (2017): Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves. J. Phys.: Conf. Ser. 840, 012032; arXiv:1702.08275

    Google Scholar 

  • Gardner, A., Conlon, J. P. (2013): Cosmological natural selection and the purpose of the universe. Complexity 18, 48–56.

    Article  ADS  MathSciNet  Google Scholar 

  • Gardner, J. N. (2000): The selfish biocosm: Complexity as cosmology. Complexity 5 (3), 34–45.

    Article  MathSciNet  Google Scholar 

  • Gardner, J. N. (2003): Biocosm: The New Scientific Theory of Evolution. Inner Ocean: Makawao.

    Google Scholar 

  • Gardner, J. N. (2005): Coevolution of the cosmic past and future: the selfish biocosm as a closed timelike curve. Complexity 10 (5), 14–21.

    Article  ADS  Google Scholar 

  • Gardner, J. N. (2007): The Intelligent Universe: AI, ET, and the Emerging Mind of the Cosmos. Career Press: Franklin Lakes.

    Google Scholar 

  • Garriga, J., Vilenkin, A. (1998): Recycling universe. Phys. Rev. D 57, 2230–2244; arXiv:astro-ph/9707292.

    Google Scholar 

  • Garriga, J., et al. (2000): Eternal inflation, black holes, and the future of civilizations. Int. J. Theor. Phys. 39, 1887–1900; arXiv:astro-ph/9909143

    Google Scholar 

  • Garriga, J., Vilenkin, A. (2001): Many worlds in one. Phys. Rev. D 64, 043511; arXiv:gr-qc/0102010

    Google Scholar 

  • Gasperini, M., Veneziano, G. (2003): The Pre-Big Bang Scenario in String Cosmology. Phys. Rept. 373, 1–212; arXiv:hep-th/0207130

    Google Scholar 

  • Gay, P. (ed.) (1968): Deism. Van Nostrand: Princeton.

    Google Scholar 

  • Gibbons, G., Hawking, S. W. (1977): Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D 15, 2738–2751.

    Article  ADS  MathSciNet  Google Scholar 

  • Gribbin, J. (2009): In Search of the Multiverse. Allen Lane: London.

    Google Scholar 

  • Harnik, R., Kribs, G., Perez, G. (2006): A Universe without weak interactions. Phys. Rev. D 74, 035006; arXiv:hep-ph/0604027

    Google Scholar 

  • Hartle, J., Hawking, S. W. (1983): The wave function of the universe. Phys. Rev. D 28, 2960–2975.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Harrison, E. R. (1995): The natural selection of universes containing intelligent life. Quart. J. Royal Astron. Soc. 36, 193–203.

    ADS  Google Scholar 

  • Harrison, E. R. (1998): Creation and Fitness of the Universe. Astronomy & Geophysics 39 (2), 27.

    Article  Google Scholar 

  • Hempel, C. G. (1965): Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. Free Press: New York.

    Google Scholar 

  • Hogan, C. J. (2000): Why the Universe is Just So. Rev. Mod. Phys. 72, 1149–1161; arXiv:astro-ph/9909295

    Google Scholar 

  • Hoyle, F. (1983): The Intelligent Universe: A New View of Creation and Evolution. Michael Joseph: London.

    Google Scholar 

  • Hsu, S., Zee, A. (2006): Message in the Sky. Mod. Phys. Lett. A 21, 1495–1500; arXiv:physics/0510102

    Google Scholar 

  • Hume, D. (1779): Dialogues Concerning Natural Religion. Dialogues Concerning Natural Religion and Other Writings. Cambridge University Press: Cambridge 2007.

    Google Scholar 

  • Inoue, M., Yokoo, H. (2011): Type III Dyson Sphere of Highly Advanced Civilizations around a Super Massive Black Hole. J. Brit. Interplanetary Soc. 64, 58–62; arXiv:1112.5519

    Google Scholar 

  • Jaffe, R. L., Jenkins, A., Kimchi, I. (2009): Quark Masses: An Environmental Impact Statement. Phys. Rev. D 79, 065014; arXiv:0809.1647

    Google Scholar 

  • Johnson, B. (2009): Deism. Truth Seeker: Escondido.

    Google Scholar 

  • Kane, G. L., Perry, M. J., Zytkow, A. N. (2002): The Beginning of the End of the Anthropic Principle. New Astron. 7, 45–53; arXiv:astro-ph/0001197

    Google Scholar 

  • Kanitscheider, B. (2009): Darwins Theorie als Prototyp und Vorläufer einer Theorie der Selbstorganisation. Universitas 64 (751), 56–66.

    Google Scholar 

  • Knobe, J., Olum, K. D., Vilenkin, A. (2006): Philosophical Implications of Inflationary Cosmology. Brit. J. Phil. Sci. 57, 47–67; arXiv:physics/0302071

    Google Scholar 

  • Krasnikov, S. (2018): Back-in-Time and Faster-than-Light Travel in General Relativity. Springer: Cham etc.

    Book  MATH  Google Scholar 

  • Krauss, L. M., Starkman, G. D. (2000): Life, The Universe, and Nothing. Astrophys. J. 531, 22–30; arXiv:astro-ph/9902189

    Google Scholar 

  • Krauss, L. M., Starkman, G. D. (2004): Universal Limits on Computation; arXiv:astro-ph/0404510

    Google Scholar 

  • Lee, K. M., Weinberg, E. J. (1987): Decay of the True Vacuum in Curved Space-Time. Phys. Rev. D 36, 1088–1094.

    Article  ADS  Google Scholar 

  • Leslie, J. (1989): Universes. Routledge: London 1996.

    Google Scholar 

  • Leslie, J. (2001): Infinite Minds. Clarendon Press: Oxford.

    Google Scholar 

  • Leslie, J. (2008). Infinitely Long Afterlives and the Doomsday Argument. Philosophy 83, 519–524.

    Article  Google Scholar 

  • Lifton, R. J., Olson, E. (2004): Symbolic immortality. In: Robben, A. C. G. M. (ed.) (2004): Death, Mourning, and Burial: A Cross-Cultural Reader. Wiley-Blackwell: Malden, Oxford, Carlton, pp. 32–39.

    Google Scholar 

  • Linde, A. D. (1987): Particle physics and inflationary cosmology. Phys. Today 40 (9), 61–68.

    Article  MathSciNet  Google Scholar 

  • Linde, A. (1992): Hard Art of the Universe Creation. Nucl. Phys. B 372, 421–442; arXiv:hep-th/9110037

    Google Scholar 

  • Linde, A. (2005): Particle Physics and Inflationary Cosmology. Contemp. Concepts Phys. 5, 1–362; arXiv:hep-th/0503203

    Google Scholar 

  • Linde, A. (2006): Inflation and String Cosmology. Prog. Theor. Phys. Suppl. 163, 295–322; arXiv:hep-th/0503195

    Google Scholar 

  • Linde, A. (2008): Inflationary Cosmology. Lect. Notes Phys.738, 1–54; arXiv:0705.0164

    Google Scholar 

  • Linde, A. (2017): On the problem of initial conditions for inflation; arXiv:1710.04278

    Google Scholar 

  • Linde, A., Vanchurin, V. (2010): How many universes are in the multiverse? Phys. Rev. D 81, 083525; arXiv:0910.1589

    Google Scholar 

  • Lipton, P. (2004): Inference to the Best Explanation. Routledge: London, 2nd ed.

    Google Scholar 

  • Lloyd, S. (2000): Ultimate physical limits to computation. Nature 406, 1047–1054; arXiv:quant-ph/9908043

    Google Scholar 

  • Mahner, M. (2018): Naturalismus. Alibri: Aschaffenburg.

    Google Scholar 

  • Manson, N. A. (2000): There is no adequate definition of ‘fine-tuned for life’. Inquiry 43, 341–352.

    Article  Google Scholar 

  • Mayes, G. R. 2005: Theories of Explanation. The Internet Encyclopedia of Philosophy; http://www.utm.edu/research/iep/e/explanat.htm

  • Maynard Smith, J., Szathmáry, E. (1996): On the likelihood of habitable worlds. Nature 384, 107.

    Article  Google Scholar 

  • McGinn, C. (1989): Can We Solve the Mind-Body Problem? Mind 98, 349–366.

    Article  Google Scholar 

  • McGrew, T., McGrew, L., Vestrup, E. (2001): Probabilities and the fine-tuning argument: a sceptical view. Mind 110, 1027–1038.

    Article  Google Scholar 

  • Merali, Z. (2006): Create your own universe. New Scientist 2559, 32–35.

    Article  Google Scholar 

  • Mersini-Houghton, L. (2008): Birth of the Universe from the Multiverse; arXiv:0809.3623

    Google Scholar 

  • Monod, J. (1970): Chance and Necessity. Knopf: New York 1971.

    Google Scholar 

  • Mosterín, J. (2005): Anthropic explanations in cosmology. In: Hajek, P., Valdés-Villanueva, L., Westerstahl, D. (eds.) (2005): Logic, Methodology and Philosophy of Science. King’s College Publications: London, pp. 441–471; http://philsci-archive.pitt.edu/1658/

  • Okasha, S. (2012): Emergence, hierarchy and top-down causation in evolutionary biology. Interface Focus 2, 49–54.

    Article  Google Scholar 

  • Papineau, D. (2016): Naturalism. The Stanford Encyclopedia of Philosophy; https://plato.stanford.edu/archives/win2016/entries/naturalism/

  • Pitt, J.C. (ed.) (1988): Theories of Explanation. Oxford University Press: New York.

    Google Scholar 

  • Poland, J. (1994): Physicalism: The Philosophical Foundations. Clarendon: Oxford.

    Book  Google Scholar 

  • Price, M. (2017): Entropy and Selection: Life as an Adaptation for Universe Replication. Complexity 2017, 1–4.

    Google Scholar 

  • Rescher, N. (2000): The Price of an Ultimate Theory. Philosophia Naturalis 37, 1–20.

    Google Scholar 

  • Ridley, M. (2004): Evolution. Blackwell: Malden, 3rd ed.

    Google Scholar 

  • Rothman, T., Ellis, G. F. R. (1993): Smolin’s natural selection hypothesis. Quart. J. Royal Astron. Soc. 34, 201–212.

    ADS  Google Scholar 

  • Sagan, L. (1967): On the origin of mitosing cells. Journal of Theoretical Biology 14, 255–274.

    Article  Google Scholar 

  • Sakai, N., et al. (2006): The universe out of a monopole in the laboratory? Phys. Rev. D 74, 024026; arXiv:gr-qc/0602084

    Google Scholar 

  • Salmon, W. C. (1998): Causality and explanation. Oxford University Press: New York.

    Book  Google Scholar 

  • Sandberg, A., Armstrong, S., Ćirković, M. M. (2016): That is not dead which can eternal lie: the aestivation hypothesis for resolving Fermi’s paradox. J. British Interplanetary Society 69, 406–415; arXiv:1705.03394

    Google Scholar 

  • Silk, J. (1997): Holistic cosmology. Science 277, 644.

    Article  Google Scholar 

  • Smart, J. (2000): Introduction to the Developmental Singularity Hypothesis; http://www.accelerationwatch.com/developmentalsinghypothesis.html

  • Smart, J. (2008): Evo Devo Universe? A Framework for Speculations on Cosmic Culture. In: Dick, S. J., Lupisella, M. (eds.): Cosmos and Culture: Cultural Evolution in a Cosmic Context. NASA: Washington, pp. 201–295; http://accelerating.org/downloads/SmartEvoDevoUniv2008.pdf

    Google Scholar 

  • Smart, J. (2012): The transcension hypothesis: sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI. Acta Astronautica 78, 55–68; http://accelerating.org/articles/transcensionhypothesis.html

    Article  ADS  Google Scholar 

  • Smart, J. (2017): The Foresight Guide; http://www.foresightguide.com/

  • Smith, Q. (1990): A natural explanation of the existence and laws of our universe. Australasian Journal of Philosophy 68 (1), 22–43; http://www.infidels.org/library/modern/quentin_smith/natural.html

    Article  Google Scholar 

  • Smolin, L. (1992): Did the universe evolve? Class. Quant. Grav. 9, 173–191.

    Article  ADS  MathSciNet  Google Scholar 

  • Smolin, L. (1997): The Life of the Cosmos. Oxford University Press: Oxford.

    MATH  Google Scholar 

  • Smolin, L. (2004): Cosmological natural selection as the explanation for the complexity of the universe. Physica A 240, 705–713.

    Article  ADS  Google Scholar 

  • Smolin, L. (2006): The status of cosmological natural selection; arXiv:hep-th/0612185

    Google Scholar 

  • Stenger, V. J. (2011): The Fallacy of Fine-Tuning: Why the Universe Is Not Designed for Us. Prometheus; Amherst.

    Google Scholar 

  • Stoljar, D. (2017): Physicalism. The Stanford Encyclopedia of Philosophy; https://plato.stanford.edu/archives/win2017/entries/physicalism/

  • Susskind, L. (2005): The Cosmic Landscape. Little, Brown: New York.

    Google Scholar 

  • Tegmark, M. (2004): Parallel Universes. In: Barrow, J., Davies, P. C. W., Harper Jr C. L., (eds.) (2004): Science and Ultimate Reality. Cambridge University Press: Cambridge, pp. 459–491; arXiv:astro-ph/0302131

    Google Scholar 

  • Tegmark, M., et al. (2006): Dimensionless constants, cosmology, and other dark matters. Phys. Rev. D 73, 23505; arXiv:astro-ph/0511774

    Google Scholar 

  • Tipler, F. J. (1994): The Physics of Immortality. Anchor Books: New York.

    Google Scholar 

  • Tough, A. (1986): What role will extraterrestrials play in humanity’s future? J. Brit. Interplanetary Soc. 39, 491–498; http://ieti.org/tough/articles/future.pdf

    ADS  Google Scholar 

  • Vaas, R. (1993): Die Welt als Würfelspiel. In: Evangelische Akademie Baden (ed.) (1993): “Gott würfelt (nicht)!” Karlsruhe, pp. 108–162.

    Google Scholar 

  • Vaas, R. (1995a): Reduktionismus und Emergenz. In: Die mechanische und die organische Natur. Beiträge zum Naturverständnis. Konzepteheft 45 des SFB 230. Stuttgart, Tübingen, pp. 102–161.

    Google Scholar 

  • Vaas, R. (1995b): Masse, Macht und der Verlust der Einheit. In: Krüger, M. (ed.) (1995): Einladung zur Verwandlung. Hanser: München, pp. 219–260.

    Google Scholar 

  • Vaas, R. (1998): Is there a Darwinian Evolution of the Cosmos? – Some Comments on Lee Smolin’s Theory of the Origin of Universes by Means of Natural Selection. Proceedings of the MicroCosmos – MacroCosmos Conference, Aachen; arXiv:gr-qc/0205119

    Google Scholar 

  • Vaas, R. (1999): Der Riß durch die Schöpfung. der blaue reiter. Journal für Philosophie 10, 39–43.

    Google Scholar 

  • Vaas, R. (2001a): Why Quantum Correlates Of Consciousness Are Fine, But Not Enough. Informação e Cognição 3 (1), 64–107; http://www2.marilia.unesp.br/revistas/index.php/reic/article/view/715/617

    Google Scholar 

  • Vaas, R. (2001b): Ewiges Leben im Universum? bild der wissenschaft 9, 62–67.

    Google Scholar 

  • Vaas, R. (2003): Problems of Cosmological Darwinian Selection and the Origin of Habitable Universes. In: Shaver, P. A., DiLella, L., Giménez, A. (eds.): Astronomy, Cosmology and Fundamental Physics. Springer: Berlin, pp. 485–486.

    Chapter  Google Scholar 

  • Vaas, R. (2004a): Ein Universum nach Maß? Kritische Überlegungen zum Anthropischen Prinzip in der Kosmologie, Naturphilosophie und Theologie. In: Hübner, J., Stamatescu, I.-O., Weber, D. (eds.) : Theologie und Kosmologie. Mohr Siebeck: Tübingen, pp. 375–498.

    Google Scholar 

  • Vaas, R. (2004b): Time before Time. Classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world; arXiv:physics/0408111

    Google Scholar 

  • Vaas, R. (2006a): Das Münchhausen-Trilemma in der Erkenntnistheorie, Kosmologie und Metaphysik. In: Hilgendorf, E. (ed.) (2006): Wissenschaft, Religion und Recht. Logos, Berlin, pp. 441–474.

    Google Scholar 

  • Vaas, R. (2006b): Dark Energy and Life’s Ultimate Future. In: Burdyuzha, V. (ed.) (2006): The Future of Life and the Future of our Civilization. Springer: Dordrecht, pp. 231–247; arXiv:physics/0703183

    Google Scholar 

  • Vaas, R. (2008a): Aufrechtstehen im Nichts. Universitas 63 (749 & 750), 1118–1137 & 1244–1259.

    Google Scholar 

  • Vaas, R. (2008b): Phantastische Physik: Sind Wurmlöcher und Paralleluniversen ein Gegenstand der Wissenschaft? In: Mamczak, S., Jeschke, W. (eds.): Das Science Fiction Jahr 2008. Heyne: München, pp. 661–743.

    Google Scholar 

  • Vaas, R. (2009a): Die Evolution der Evolution. Universitas 64 (751), 4–29.

    Google Scholar 

  • Vaas, R. (2009b): Life, the Universe, and almost Everything: Signs of Cosmic Design?; arXiv:0910.5579

    Google Scholar 

  • Vaas, R. (2009c): Gods, Gains, and Genes. On the Natural Origin of Religiosity by Means of Bio-cultural Selection. In: Voland, E., Schiefenhövel, W. (eds.) (2009): The Biological Evolution of Religious Mind and Behavior. Springer: Heidelberg, pp. 25–49.

    Google Scholar 

  • Vaas, R. (2010): Multiverse Scenarios in Cosmology: Classification, Cause, Challenge, Controversy, and Criticism. J. Cosmology 4, 664–673; arXiv:1001.0726

    Google Scholar 

  • Vaas, R. (2012a): Cosmological Artificial Selection: Creation out of Something? Found. Sci. 17, 25–28; arXiv:0912.5508

    Google Scholar 

  • Vaas, R. (2012b): “Ewig rollt das Rad des Seins”: Der ‘Ewige-Wiederkunfts-Gedanke’ und seine Aktualität in der modernen physikalischen Kosmologie. In: Heit, H., Abel, G., Brusotti, M. (eds.) (2012): Nietzsches Wissenschaftsphilosophie. de Gruyter: Berlin, New York, pp. 371–390.

    Google Scholar 

  • Vaas, R. (2013): Die neue Schöpfungsgeschichte Gottes – Herausforderungen einer Evolutionsbiologie der Religiosität. In: Fink, H. (ed.) (2013): Die Fruchtbarkeit der Evolution. Alibri: Aschaffenburg, pp. 133–172.

    Google Scholar 

  • Vaas, R. (2014a): Wahrheiten auf hoher See. Maritime Metaphern vom Leben, Forschen und Untergehen. Universitas 69 (820), 42–71.

    Google Scholar 

  • Vaas, R. (2014b): Vom Gottesteilchen zur Weltformel. Kosmos: Stuttgart, 2nd ed.

    Google Scholar 

  • Vaas, R. (2015): Im Anfang war der Urknall – oder nichts, Gott, alles? Schöpfungsglaube gegen moderne Kosmologie. Universitas 70 (823), 44–76.

    Google Scholar 

  • Vaas, R. (2017a): Bewusstsein X.0. Von digitalen Denkwürdigkeiten zur ungeheuerlichen Unsterblichkeit. Universitas 72 (854), 64–81.

    Google Scholar 

  • Vaas, R. (2017b): Umzug der Menschheit? Vom Homo sapiens zum Homo spaciens und weiter … Universitas 72 (856), 42–69.

    Google Scholar 

  • Vaas, R. (2017c): Jenseits von Einsteins Universum. Kosmos: Stuttgart, 4th ed.

    Google Scholar 

  • Vaas, R. (2018a): Superzivilisationen im All. bild der wissenschaft 7, 8–26.

    Google Scholar 

  • Vaas, R. (2018b): Hawkings neues Universum. Wie es zum Urknall kam. Kosmos: Stuttgart, 6th ed.

    Google Scholar 

  • Vaas, R. (2018c): Tunnel durch Raum und Zeit. Kosmos: Stuttgart, 8th ed.

    Google Scholar 

  • Vakoch, D. A. (ed.) (2014): Extraterrestrial Altruism: Evolution and Ethics in the Cosmos. Springer: Heidelberg.

    Google Scholar 

  • van Riel, R., Van Gulick, R. (2018): Scientific Reduction. The Stanford Encyclopedia of Philosophy; https://plato.stanford.edu/archives/sum2018/entries/scientific-reduction/

  • Vidal, C. (2008): The Future of Scientific Simulations: from Artificial Life to Artificial Cosmogenesis. In: Tandy, C. (ed.) (2008): Death And Anti-Death. Ria University Press: Palo Alto, pp. 285–318; arXiv:0803.1087

    Google Scholar 

  • Vidal, C. (2010): Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics. Found. Sci. 15 (4), 375–393; arXiv:0912.5508

    Google Scholar 

  • Vidal, C. (2011): Black Holes: Attractors for Intelligence?; arXiv:1104.4362

    Google Scholar 

  • Vidal, C. (2012): Fine-tuning, Quantum Mechanics and Cosmological Artificial Selection. Found. Sci. 17 (1), 29–38; arXiv:0912.5508

    Google Scholar 

  • Vidal, C. (2014): The Beginning and the End: The Meaning of Life in a Cosmological Perspective Springer: Heidelberg etc.; arXiv:1301.1648

    Google Scholar 

  • Vilenkin, A. (1995): Predictions from Quantum Cosmology. Phys. Rev. Lett. 74, 846–849; arXiv:gr-qc/9406010

    Google Scholar 

  • Vilenkin, A. (2006a): On cosmic natural selection; arXiv:hep-th/0610051

    Google Scholar 

  • Vilenkin, A. (2006b): Many Worlds in One. Hill and Wang: New York.

    MATH  Google Scholar 

  • Visser, M. (1996): Lorentzian Wormholes. American Institute of Physics Press: Woodbury.

    Google Scholar 

  • Vollmer, G. (2016): Im Lichte der Evolution. Hirzel: Stuttgart.

    Google Scholar 

  • Vollmer, G. (2017): Gretchenfragen an Naturalisten. Alibri: Aschaffenburg.

    Google Scholar 

  • Waring, E. G. (ed.) (1967): Deism and Natural Religion. Frederick Ungar: New York.

    Google Scholar 

  • Weinstein, S., Fine, A. (1998): Book Review of Lee Smolin’s The Life of the Cosmos. J. Phil. XCV, 264–268.

    Google Scholar 

  • Wheeler, J. A. (1975): The universe as home for man. In: Gingerich, O. (ed.) (1975): The nature of scientific discovery. Smithsonian Institution Press: Washington, pp. 261–296

    Google Scholar 

  • Wheeler, J. A. (1977): Genesis and observership. In: Butts, R. E., Hintikka, J. (eds.) (1977): Foundational problems in the special sciences. Reidel: Dordrecht, pp. 3–33.

    Google Scholar 

  • Wheeler, J. A. (1980): Law without law. In: Medawar, P., Shelley, J. (eds.) (1980): Structure in Science. Elsevier: New York, pp. 132–154.

    Google Scholar 

  • Wheeler, J. A. (1983): On recognizing law without law. Am. J. Phys. 51, 398–404.

    Article  ADS  Google Scholar 

  • Windsor, H. H. (1907): Cart before the horse, Popular Mechanics 4, 425.

    Google Scholar 

  • Wittgenstein, L. (1922): Tractatus Logico-Philosophicus. Kegan Paul, Trench, Trubner & Co.: London.

    MATH  Google Scholar 

  • Woodward, J. (2003/2009): Scientific Explanation. The Stanford Encyclopedia of Philosophy; http://plato.stanford.edu/entries/scientific-explanation/

  • Yurov, A. V., Martín Moruno, P., González-Díaz, P. F. (2006): New “Bigs” in cosmology. Nucl. Phys. B 759, 320–341; arXiv:astro-ph/0606529

    Google Scholar 

  • Zimorski, V., et al. (2014): Endosymbiotic theory for organelle origins. Current Opinions in Microbiology 22, 38–48.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is partly based on Vaas (2009b, 2012a). I am grateful to Anthony Aguirre, Juan García-Bellido, John Leslie, Andrei Linde, Lee Smolin, Paul Steinhardt, and Alex Vilenkin for discussion over the years as well as Angela Lahee, André Spiegel, and Jenny Wagner for their kind support. Thanks also to John Smart and Clément Vidal for motivation, the invitation to contribute, and their very valuable suggestions. Scientific speculation and philosophy of science and nature are often dangerous fields but useful and thrilling nevertheless for getting ideas, criticism, and motivation to struggle against the boundaries of experience, empirical research, established theories, and imagination. As Carl Sandburg once wrote: “Nothing happens unless first a dream.”

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaas, R. (2019). Life, Intelligence, and the Selection of Universes. In: Georgiev, G., Smart, J., Flores Martinez, C., Price, M. (eds) Evolution, Development and Complexity. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-00075-2_3

Download citation

Publish with us

Policies and ethics