Skip to main content

The Quasi-circular Mapping Visualization Based on Extending and Reordering Dimensions for Visual Clustering Analysis

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11064))

Included in the following conference series:

  • 1888 Accesses

Abstract

Radial coordinate visualization (RadViz) and Star Coordinates (SC) can effectively map high dimensional data to low dimensional space, owing to which can place an arbitrary number of Dimension Anchors (DAs). Nevertheless, the problem owner is faced with ordering DAs, which is a NP-complete problem and visual results of crowding which hamper clustering analysis. We introduce a new radial layout visualization, called the Quasi-circular mapping visualization (QCMV), to address those problems in this paper. Firstly, QCMV extend the original dimension of datasets by the probability distribution histogram of the dimension and affinity propagation (AP) algorithm. In additional, distributing them on the unit circle by their correlation according to the correlation of the extended dimensions. Then, mapping the dimensions extended and reordered data to integrate a polygon in the Quasi-circular space and visualizing them by the geometric center and area of the polygon in the three dimension. Finally strengthening their visual clustering effect with t-SNE. We also compare the visual clustering results of RadViz, SC and QCMV with two indexes, correct rate and Dunn index on visually analyzing the three datasets. It shows better effect of visual clustering with QCMV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y., Li, Z., Wang, Y., et al.: A novel approach for stable selection of informative redundant features from high dimensional fMRI data. Comput. Sci. 146, 191–208 (2016)

    Google Scholar 

  2. Engel, D., Hummel, M., Hoepel, F., et al.: Towards high-dimensional data analysis in air quality research. In: Eurographics Conference on Visualization. The Eurographs Association & John Wiley & Sons, Ltd., pp. 101–110 (2013)

    Google Scholar 

  3. Zhang, X., Lai, S.Q., Liu, N.W.: Research on cloud computing data security model based on multi-dimension. In: International Symposium on Information Technology in Medicine and Education, IEEE, pp. 897–900 (2012)

    Google Scholar 

  4. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1), 37–52 (1987)

    Article  Google Scholar 

  5. Mohebi, E., Bagirov, A.: Constrained self organizing maps for data clusters visualization. Neural Process. Lett. 43(3), 849–869 (2016)

    Article  Google Scholar 

  6. Dzemyda, G., Kurasova, O., Žilinskas, J.: Combining multidimensional scaling with artificial neural networks. Multidimensional Data Visualization. SOIA, vol. 75, pp. 113–177. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-0236-8_4

    Chapter  MATH  Google Scholar 

  7. Kireeva, N., Baskin, I.I., Gaspar, H.A., et al.: Generative topographic mapping (GTM): universal tool for data visualization, structure-activity modeling and dataset comparison. Mol. Inform. 31(3–4), 301–312 (2012)

    Article  Google Scholar 

  8. Xie, Y., Sun, P.: Terahertz data combined with principal component analysis applied for visual classification of materials. Opt. Quant. Electron. 50(1), 46–57 (2018)

    Article  Google Scholar 

  9. Sarlin, P., Marghescu, D.: Visual predictions of currency crises using self-organizing maps. In: IEEE International Conference on Data Mining Workshops. IEEE, pp. 15–38 (2011)

    Google Scholar 

  10. Sarikaya, A., Gleicher, M.: Scatterplots: tasks, data and designs. IEEE Trans. Vis. Comput. Graphics 24(1), 402–412 (2018)

    Article  Google Scholar 

  11. Heinrich, J., Weiskopf, D.: State of the art of parallel coordinates. Eurographics 34(1), 17–25 (2012)

    Google Scholar 

  12. Hoffman, P., Grinstein, G., Marx, K., et al.: DNA visual and analytic data mining. In: Visualization 1997, Proceedings. IEEE, pp. 437–441 (1997)

    Google Scholar 

  13. Kandogan, E.: Star coordinates: a multi-dimensional visualization technique with uniform treatment of dimensions. In: Proceedings of the IEEE Information Visualization Symposium Late Breaking Hot Topics, pp. 9–12 (2000)

    Google Scholar 

  14. Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, DBLP, pp. 107–116 (2001)

    Google Scholar 

  15. Cerdas, F., Kaluza, A., Erkisi-Arici, S., et al.: Improved visualization in LCA through the application of cluster heat maps. Procedia CIRP 61, 732–737 (2017)

    Article  Google Scholar 

  16. Li, M., Zhen, L., Yao, X.: How to read many-objective solution sets in parallel coordinates [educational forum]. IEEE Comput. Intell. Mag. 12(4), 88–100 (2017)

    Article  Google Scholar 

  17. Walker, D.J., Everson, R., Fieldsend, J.E.: Visualizing mutually nondominating solution sets in many-objective optimization. IEEE Trans. Evol. Comput. 17(2), 165–184 (2013)

    Article  Google Scholar 

  18. Ankerst, M., Berchtold, S., Keim, D.A.: Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In: IEEE Symposium on Information Visualization, 1998. Proceedings. IEEE, vol. 153, pp. 52–60 (1998)

    Google Scholar 

  19. Di Caro, L., Frias-Martinez, V., Frias-Martinez, E.: Analyzing the role of dimension arrangement for data visualization in RadViz. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 125–132. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13672-6_13

    Chapter  Google Scholar 

  20. Sharko, J., Grinstein, G., Marx, K.A.: Vectorized RadViz and its application to multiple cluster datasets. IEEE Trans. Vis. Comput. Graph. 14(6), 1427–1444 (2008)

    Article  Google Scholar 

  21. Zhou, F., Huang, W., Li, J., et al.: Extending dimensions in RadViz based on mean shift. In: Visualization Symposium. IEEE, pp. 111–115 (2015)

    Google Scholar 

  22. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization. IEEE International Conference on Computer Vision. IEEE, pp. 1–8 (2007)

    Google Scholar 

  23. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)

    MATH  Google Scholar 

  24. Russell, A., Daniels, K., Grinstein, G.: Voronoi diagram based dimensional anchor assessment for radial visualizations. In: International Conference on Information Visualisation, pp. 229–233. IEEE (2012)

    Google Scholar 

  25. Lehmann, D.J., Theisel, H.: Orthographic star coordinates. IEEE Trans. Vis. Comput. Graph. 19(12), 2615–2624 (2013)

    Article  Google Scholar 

  26. Zanabria, G.G., Nonato, L.G., Gomez-Nieto, E.: iStar (i*): an interactive star coordinates approach for high-dimensional data exploration. Comput. Graph. 60, 107–118 (2016)

    Article  Google Scholar 

  27. Rubiosanchez, M., Raya, L., Diaz, F., et al.: A comparative study between RadViz and star coordinates. IEEE Trans. Vis. Comput. Graph. 22(1), 619–628 (2015)

    Article  Google Scholar 

  28. Gan, H., Sang, N., Huang, R.: Self-training-based face recognition using semi-supervised linear discriminant analysis and affinity propagation. J. Opt. Soc. Am. A 31(1), 1–6 (2014)

    Article  Google Scholar 

  29. Sharma, S., Agrawal, A., Patel, D.: Class aware exemplar discovery from microarray gene expression data. In: Kumar, N., Bhatnagar, V. (eds.) BDA 2015. LNCS, vol. 9498, pp. 244–257. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27057-9_17

    Chapter  Google Scholar 

  30. Xie, Q., Remil, O., Guo, Y., et al.: Object detection and tracking under occlusion for object-level RGB-D video segmentation. IEEE Trans. Multimed. 20(3), 580–592 (2018)

    Article  Google Scholar 

  31. Kaveh, A., Rahimi Bondarabady, H.A.: Finite element mesh decomposition using complementary Laplacian matrix. Commun. Numer. Methods Eng. 16(6), 379–389 (2000)

    Article  MathSciNet  Google Scholar 

  32. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(23), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  33. Wunsch, D., Xu, R.: Clustering (IEEE Press Series on Computational Intelligence). IEEE Computer Society Press, Washington DC (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Li, M., Chen, H. (2018). The Quasi-circular Mapping Visualization Based on Extending and Reordering Dimensions for Visual Clustering Analysis. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11064. Springer, Cham. https://doi.org/10.1007/978-3-030-00009-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00009-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00008-0

  • Online ISBN: 978-3-030-00009-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics