Skip to main content

Neuroendocrine Control of Puberty

  • Chapter
Early Puberty

Abstract

Puberty results from the complete maturation of the GnRH neuronal network. It marks the reactivation of this network after a long period of quiescence during childhood. This reactivation causes an increase of sexual hormones leading to the appearance of secondary sexual characteristic. Several neuropeptides have now been described. The age at puberty is a sensitive indicator of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Roux N, Genin E, Carel JC et al (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972–10976

    Article  PubMed Central  PubMed  Google Scholar 

  2. Seminara SB, Messager S, Chatzidaki EE et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627

    Article  CAS  PubMed  Google Scholar 

  3. Topaloglu AK, Reimann F, Guclu M et al (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 41:354–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Topaloglu AK, Tello JA, Kotan LD et al (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635

    Article  CAS  PubMed  Google Scholar 

  5. Pinilla L, Aguilar E, Dieguez C et al (2012) Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 92:1235–1316

    Article  CAS  PubMed  Google Scholar 

  6. Goodman RL, Lehman MN (2012) Kisspeptin neurons from mice to men: similarities and differences. Endocrinology 153:5105–5118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ducret E, Anderson GM, Herbison AE (2009) RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology 150:2799–2804

    Article  CAS  PubMed  Google Scholar 

  8. Ojeda SR, Urbanski H (2007) Puberty in the rat. In: Neill D, Knobil E (eds) The physiology of reproduction. Place Raven Press, New York, pp 363–410

    Google Scholar 

  9. Ojeda SR, Lomniczi A, Mastronardi C et al (2006) Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 147:1166–1174

    Article  CAS  PubMed  Google Scholar 

  10. Sharif A, Baroncini M, Prevot V (2013) Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 98:1–15

    Article  CAS  PubMed  Google Scholar 

  11. Prevot V (2002) Glial-neuronal-endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol 14:247–255

    Article  CAS  PubMed  Google Scholar 

  12. Bellefontaine N, Hanchate NK, Parkash J et al (2011) Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 93:74–89

    Article  CAS  PubMed  Google Scholar 

  13. Guimiot F, Chevrier L, Dreux S et al (2012) Negative fetal FSH/LH regulation in late pregnancy is associated with declined kisspeptin/KISS1R expression in the tuberal hypothalamus. J Clin Endocrinol Metab 97:E2221–E2229

    Article  CAS  PubMed  Google Scholar 

  14. Wu FC, Borrow SM, Nicol K et al (1989) Ontogeny of pulsatile gonadotrophin secretion and pituitary responsiveness in male puberty in man: a mixed longitudinal and cross-sectional study. J Endocrinol 123:347–359

    Article  CAS  PubMed  Google Scholar 

  15. Abreu AP, Dauber A, Macedo DB et al (2013) Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 368:2467–2475

    Article  CAS  PubMed  Google Scholar 

  16. Elias CF (2012) Leptin action in pubertal development: recent advances and unanswered questions. Trends Endocrinol Metab 23:9–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Strobel A, Issad T, Camoin L et al (1998) A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 18:213–215

    Article  CAS  PubMed  Google Scholar 

  18. Zeinoaldini S, Swarts JJ, Van de Heijning BJ (2006) Chronic leptin infusion advances, and immunoneutralization of leptin postpones puberty onset in normally fed and feed restricted female rats. Peptides 27:1652–1658

    Article  CAS  PubMed  Google Scholar 

  19. Louis GW, Greenwald-Yarnell M, Phillips R et al (2011) Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 152:2302–2310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7:1040–1047

    Article  CAS  PubMed  Google Scholar 

  21. Gottsch ML, Navarro VM, Zhao Z et al (2009) Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci 29:9390–9395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Clarkson J, Boon WC, Simpson ER et al (2009) Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150:3214–3220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sulem P, Gudbjartsson DF, Rafnar T et al (2009) Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat Genet 41:734–738

    Article  CAS  PubMed  Google Scholar 

  24. Ong KK, Elks CE, Li S et al (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet 41:729–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. He C, Kraft P, Chen C et al (2009) Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet 41:724–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Perry JR, Stolk L, Franceschini N et al (2009) Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet 41:648–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhu H, Shah S, Shyh-Chang N et al (2010) Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat Genet 42:626–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lehrbach NJ, Armisen J, Lightfoot HL et al (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16:1016–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Peng S, Chen LL, Lei XX et al (2011) Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells 29:496–504

    Article  CAS  PubMed  Google Scholar 

  30. Hoffmann K, Heller R (2011) Uniparental disomies 7 and 14. Best Pract Res Clin Endocrinol Metab 25:77–100

    Article  CAS  PubMed  Google Scholar 

  31. Lomniczi A, Loche A, Castellano JM et al (2013) Epigenetic control of female puberty. Nat Neurosci 16:281–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hochberg Z, Belsky J (2013) Evo-devo of human adolescence: beyond disease models of early puberty. BMC Med 11:113

    Article  PubMed Central  PubMed  Google Scholar 

  33. Mouritsen A, Frederiksen H, Sorensen K et al (2013) Urinary phthalates from 168 girls and boys measured twice a year during a 5 year period: associations with adrenal androgen levels and puberty. J Clin Endocrinol Metab 98(9):3755–3764

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas de Roux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Villanueva, C., de Roux, N. (2016). Neuroendocrine Control of Puberty. In: Bouvattier, C., Pienkowski, C. (eds) Early Puberty. Springer, Paris. https://doi.org/10.1007/978-2-8178-0543-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0543-6_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0542-9

  • Online ISBN: 978-2-8178-0543-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics