Skip to main content

Abstract

The serine/threonine kinase mammalian target of rapamycin (mTOR) plays a central role in regulating critical cellular processes such as growth, proliferation, and protein synthesis. The study of cancer predisposing syndromes within which neuroendocrine tumors (NETs) may arise has furnished clues on the involvement of mTOR pathway in sporadic diseases so far. Recent comprehensive analyses have definitely shown activation of mTOR pathway in both experimental and human sporadic NETs. Upstream regulators of mTOR (PTEN and TSC2) have been found mutated in sporadic PNETs. Activation of mTOR pathways in NETs is already demonstrated by expression profiles analysis that revealed downregulation of TSC2 gene and alterations of TSC2 and PTEN protein expression in the vast majority of tumors well-differentiated tumors. Moreover, a global microRNA expression analysis revealed the overexpression, in highly aggressive tumors, of a microRNA (miR-21) that targets PTEN reducing its expression and therefore leading to mTOR activation as well. Overall, these clues have furnished the rationale for the use of mTOR inhibitors the treatment for PNETs. With the recent approval of everolimus (mTOR-targeted drug) for the treatment of advanced PNETs, this paradigm has been effectively translated into the clinical setting. In this review, we discuss mTOR pathway involvement in NETs, the clinical evidence supporting the use of mTOR inhibitors in cancer treatment, and the current clinical issues that remain to be elucidated to improve patients’ management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Missiaglia E, Dalai I, Barbi S et al (2010) Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 28(2):245–255

    Article  CAS  PubMed  Google Scholar 

  3. Gough NR (2009) Focus issue: demystifying mTOR signaling. Sci Signal 67(2):1–2

    Google Scholar 

  4. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    Article  CAS  PubMed  Google Scholar 

  5. Thomas GV, Tran C, Mellinghoff IK et al (2006) Hypoxia-inducible factor determines sensitivity to inhibition of mTOR in kidney cancer. Nat Med 12(1):122–127

    Article  CAS  PubMed  Google Scholar 

  6. Hudson CC, Liu M, Chiang GG et al (2002) Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol Cell Biol 22(20):7004–7014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Johannessen CM, Reczek E, James MF et al (2005) The NF1 suppressor critically regulates TSC2 and mTOR. PNAS 24(102):8573–8578

    Article  Google Scholar 

  8. Speel EJM, Richter J, Moch H et al (1999) Short communication: genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am J Pathol 155(6):1787–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Floridia G, Grilli G, Salvatore M et al (2005) Chromosomal alterations detected by comparative genomic hybridization in nonfunctioning endocrine pancreatic tumors. Cancer Genet Cytogenet 156(1):23–30

    CAS  PubMed  Google Scholar 

  10. Hu W, Feng Z, Modica I et al (2010) Gene amplification in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway. Genes Cancer 1(14):360–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Roldo C, Missiaglia E, Hagan JP et al (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behaviour. J Clin Onc 24(29):4677–4684

    Article  CAS  Google Scholar 

  12. Jiao Y, Shi C, Edil BH et al (2011) DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331(6021):1199–1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Corbo V, Beghelli S, Bersani S et al (2012) Pancreatic endocrine tumors: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Onc 23:127–134

    Article  CAS  Google Scholar 

  14. Kang S, Denley A, Vanhaesebroeck B et al (2006) Oncogenic transformation induced by the p110β, −γ and −δ isoforms of class I phosphoinositide 3-kinase. Proc Natl Acad Sci 103(5):1289–1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Barbi S, Cataldo I, De Manzoni G et al (2010) The analysis of PI3KCA mutations in gastric carcinoma and metanalysis of literature suggest that exon-selectivity is a signature of cancer type. J Exp Clin Cancer Res 29:32

    Article  PubMed Central  PubMed  Google Scholar 

  16. Pitt SC, Chen H, Kunnimalaiyann M et al (2010) Phosphatidyl inositol-3-kinase-Akt signaling in pulmonary carcinoid cells. J Am Coll Surg 209(1):82–88

    Article  Google Scholar 

  17. Couderc C, Poncet G, Villaume K et al (2011) Targeting the PI3K/mTOR pathway in murine endocrine cell lines in vitro and in vivo effects on tumor cells. AJPA 178(1):336–344

    CAS  Google Scholar 

  18. Zitzmann K, Ruden JV, Brand S et al (2010) Compensatory activation of Akt in response to mTOR and Raf inhibitors—a rationale for dual-targeted therapy approaches in neuroendocrine tumor disease. Cancer Lett 295(1):100–109

    Article  CAS  PubMed  Google Scholar 

  19. Carracedo A, Ma L, Teruya-feldstein J et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Investig 118(9):3065–3074

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24(50):7455–7464

    Article  CAS  PubMed  Google Scholar 

  21. Parsons DW, Wang TL, Samuels Y et al (2005) Colorectal cancer: mutations in signaling pathway. Nature 436(7052):792

    Article  CAS  PubMed  Google Scholar 

  22. Staal SP (1987) Molecular cloning of akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci 84:5034–5037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Brugge J, Hung MC, Mills GB (2007) A new mutational AKTivation in the PI3K pathway. Cancer Cell 12(2):104–107

    Article  CAS  PubMed  Google Scholar 

  24. Bleeker FE, Felicioni L, Buttitta F et al (2008) AKT1(E17K) in human solid tumors. Oncogene 27(42):5648–5650

    Article  CAS  PubMed  Google Scholar 

  25. Ghayouri M, Boulware D, Nasir A et al (2010) Activation of the serine/threonine protein kinase Akt in enteropancreatic neuroendocrine tumors. Anticancer Res 30(12):5063–5067

    PubMed  Google Scholar 

  26. Zitzmann K, Vlotides G, Brand S et al (2012) Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocr Relat Cancer 19(3):423–434

    Article  CAS  PubMed  Google Scholar 

  27. Lin J, Sampath D, Nannini MA et al (2013) Targeting activated Akt with GDC-0068, a novel selective Akt inhibitor that is efficacious in multiple tumor model. Clin Cancer Res 19(7):1–13

    Article  CAS  Google Scholar 

  28. Gloesenkamp CR, Nitzsche B, Ocker M et al (2012) AKT inhibition by tricribine alone or as combination therapy for growth control in gastroenteropancreatic neuroendocrine tumors. Int J Oncol 40(3):876–888

    CAS  PubMed  Google Scholar 

  29. Somnay Y, Simon K, Harrison AD et al (2013) Neuroendocrine phenotype alteration and growth suppression through apoptosis by MK-2206, an allosteric inhibitor of AKT, in carcinoid cell lines in vitro. Anti-cancer Drugs 24(1):66–72

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Yap TA, Yan L, Patnaik A et al (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29(35):4688–4695

    Article  CAS  PubMed  Google Scholar 

  31. Hardt M, Chantaravisoot N, Tamanoi F et al (2011) Activating mutations of TOR (target of rapamycin). Genes Cells 16(2):141–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sato T, Nakashima A, Guo L et al (2010) Single aminoacid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 29(18):2746–2752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Righi L, Volante M, Rapa I et al (2010) Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr Relat Cancer 17:977–987

    Article  CAS  PubMed  Google Scholar 

  34. Zhou CF, Ji J, Yuan F et al (2011) mTOR activation in well differentiated pancreatic neuroendocrine tumors: a retrospective study on 34 cases. Hepatogastroenterology 58(112):1–11

    PubMed  Google Scholar 

  35. Kasajima A, Pavel M, Darb-Esfahani S et al (2011) mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 18:181–192

    Article  CAS  PubMed  Google Scholar 

  36. Grozinsky-Glasberg S, Franchi G, Teng M et al (2008) Octreotide and the mTOR inhibitor RAD001 blocks proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuroendocrine tumor cell line. Neuroendocrinology 87:168–181

    Article  CAS  PubMed  Google Scholar 

  37. Zitzmann K, De Toni EN, Brand S et al (2007) The novel mTOR inhibitor RAD001 (everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells. Neuroendocrinology 85(1):54–60

    Article  CAS  PubMed  Google Scholar 

  38. Meric-Bernstam F, Akcakanat A, Chen H et al (2012) PI3KCA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res 18(16):1777–1789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Serra V, Markman B, Scaltriti M et al (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68(19):8022–8030

    Article  CAS  PubMed  Google Scholar 

  40. Yao JC, Lombard-Bohas C, Baudin E et al (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 28(1):69–76

    Article  CAS  PubMed  Google Scholar 

  41. Pavel ME, Hainsworth JD, Baudin E et al (2011) Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumors associated with carcinoid syndrome (RADIANT-2): a randomized, placebo-controlled, phase III study. Lancet 378(9808):2005–2012

    Article  CAS  PubMed  Google Scholar 

  42. Yao JC, Shah MH, Ito T et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. New Engl J Med 364:514–523

    Article  CAS  PubMed  Google Scholar 

  43. Meng F, Henson R, Wehbe-Janek H et al (2007) Micro-RNA 21 regulate expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gatroenterology 133(2):647–658

    Article  CAS  Google Scholar 

  44. Dan S, Okamura M, Seki M (2010) Correlating Phosphatidylinositol 3-kinase inhibitor efficacy with signaling pathway status: in silico and biological evaluation. Cancer Res 70:4982–4994

    Article  CAS  PubMed  Google Scholar 

  45. O’Brien C, Wallin JJ, Sampath D et al (2010) Predictive biomarkers of sensitivity to phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clin Cancer Res 16:3670–3683

    Article  PubMed  Google Scholar 

  46. Serra S, Zheng L, Hassan M (2012) The FGFR4-G388R single nucleotide polymorphism alters pancreatic neuroendocrine tumor progression and response to mTOR inhibition therapy. Cancer Res 72(22):5683–5891

    Article  CAS  PubMed  Google Scholar 

  47. Ilic N, Utermark T, Widlund HR et al (2011) PI3K-targeted therapy can be evaded by amplification along the MYC-eukaryotic translation factor 4E (eIF4E) axis. Proc Natl Acad Sci 108(37):E699–E708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Muellner MK, Uras IZ, Gapp BV et al (2011) A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 7(11):787–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhang H, Bajraszewski N, Wu E et al (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Inv 117(3):730–738

    Article  CAS  Google Scholar 

  50. Harrington LS, Findlay GM, Gray A et al (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166(2):213–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650–1656

    Article  CAS  PubMed  Google Scholar 

  52. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedback and cross-talks. Oncogene 27(41):5527–5541

    Article  CAS  PubMed  Google Scholar 

  53. Svejda B, Kidd M, Kazberouk A et al (2011) Limitations in small intestinal neuroendocrine therapy by mTOR kinase inhibition reflect growth factor-mediated PI3K feedback loop activation via ERK1/2 and AKT. Cancer 117(18):4141–4154

    Article  CAS  PubMed  Google Scholar 

  54. Iida S, Miki Y, Ono K et al (2012) Synergistic anti-tumor effect of RAD001 with MEK inhibitors in neuroendocrine tumors: a potential mechanism of therapeutic limitation of mTOR inhibitor. Mol Cell Endocr 350(1):99–106

    Article  CAS  Google Scholar 

  55. Faustino A, Couto JP, Populo H et al (2012) mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. J Clin End Metab 97:1–11

    Article  Google Scholar 

  56. Ma L, Chen Z, Erdjument-Bromage H et al (2005) Phosphorylation and functional inactivation of TSC2 by Erk: implications for Tuberous Sclerosis and cancer pathogenesis. Cell 121(2):179–193

    CAS  PubMed  Google Scholar 

  57. Arsham AM, Howell J, Simon MC (2003) A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem 278(32):29655–29660

    Article  CAS  PubMed  Google Scholar 

  58. Bernardi R, Guernah I, Jin D et al (2006) PML inhibits HIF1α translation and neoangiogenesis through repression of mTOR. Nature 442(17):779–785

    Article  CAS  PubMed  Google Scholar 

  59. Pool S, Bison S, Koelewijn SJ (2013) mTOR inhibitor RAD001 promote metastasis in a rat model of pancreatic neuroendocrine cancer. Cancer Res 73:12–18

    Article  CAS  PubMed  Google Scholar 

  60. Yao JC, Phan AT, Jehl V et al (2013) Everolimus in advanced pancreatic neuroendocrine tumors: the clinical experience. Cancer Res 73:1449–1453

    Article  CAS  PubMed  Google Scholar 

  61. Chan J, Mayer R, Jackson N et al (2013) Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. Cancer Chemother Pharmacol Mar 9 (Epub ahead of print)

    Google Scholar 

  62. Opel D, Naumann I, Schneider M (2011) Targeting aberrant PI3K/Akt activation by PI103 restore sensitivity to TRAIL-induced apoptosis in neuroblastoma. Clin Cancer Res 17:3233–3247

    Article  CAS  PubMed  Google Scholar 

  63. Zitzmann K, De Toni E, Von Ruden J et al (2011) The novel Raf inhibitor Raf225 decreases bcl-2 levels and confer TRAIL-sensitivity to neuroendocrine tumor cells. Endocr Relat Cancer 18:277–285

    Article  CAS  PubMed  Google Scholar 

  64. Alers S, Loffler A, Wesselborg S et al (2011) Role of AMPK-mTOR-Ulk1/2 in regulation of autophagy: cross-talk, shortcuts and feedbacks. Mol Cell Biol 32(1):2–11

    Article  PubMed  Google Scholar 

  65. Seitz C, Hugle M, Cristofanon S et al (2012) The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int J Cancer Dic 4 (Epub ahead of print)

    Google Scholar 

  66. Inoue M, Hager JH, Ferrara N et al (2002) VEGF-A has a critical non-redundant role in angiogenic switching and pancreatic β-cell carcinogenesis. Cancer Cell 1(2):193–202

    Article  CAS  PubMed  Google Scholar 

  67. Raymond E, Dahan L, Raoul JL et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. New Engl J Med 364(6):501–513

    Article  CAS  PubMed  Google Scholar 

  68. Casanovas O, Hicklin DJ, Bergers G et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic. Cancer Cell 8(4):299–309

    Article  CAS  PubMed  Google Scholar 

  69. Allen E, Walters IB, Hanahan D (2011) Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumor developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res 17(16):5299–5310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Franco M, Paez-Ribes M, Cortez E et al (2011) Use of a mouse model of pancreatic neuroendocrine tumors to find pericyte biomarkers of resistance to anti-angiogenic therapy. Hormon Metab Res 43(12):884–889

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tortora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Cingarlini, S., Bonomi, M., Trentin, C., Corbo, V., Scarpa, A., Tortora, G. (2014). Profiling mTOR Pathway in Neuroendocrine Tumors. In: Raymond, E., Faivre, S., Ruszniewski, P. (eds) Management of Neuroendocrine Tumors of the Pancreas and Digestive Tract. Springer, Paris. https://doi.org/10.1007/978-2-8178-0430-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0430-9_2

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0429-3

  • Online ISBN: 978-2-8178-0430-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics