Skip to main content

Application of Three-Dimensional Structured Illumination Microscopy in Cell Biology: Pitfalls and Practical Considerations

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

Super-resolution fluorescence microscopy techniques have paved the way to address cell biological questions with unprecedented spatial resolution. Of these, three-dimensional structured illumination microscopy (3D-SIM) reaches a nearly eightfold increased volumetric resolution compared to conventional diffraction-limited methods and allows multicolor optical sectioning of standard fluorescently labeled fixed or live samples. Owing to its broad application spectrum, 3D-SIM is likely to become a key method in cell biological far-field imaging, complementing more specialized higher-resolving techniques, such as single molecule localization and cryo-electron microscopy. To fully explore the potential of 3D-SIM, however, considerably greater care needs to be taken with regard to the preparation of the sample, calibration of the instrument, post-processing of the data, and extraction of valid quantitative measurements. In this chapter we discuss technical problems typically encountered and provide guidelines for troubleshooting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conchello J-A, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2:920–931

    Article  CAS  PubMed  Google Scholar 

  2. Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2:910–919

    Article  CAS  PubMed  Google Scholar 

  3. Fernández-Suárez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9:929–943

    Article  PubMed  Google Scholar 

  4. Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, Solovei I, Cremer T (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463:205–239

    Article  CAS  PubMed  Google Scholar 

  5. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  PubMed  Google Scholar 

  6. Romer T, Leonhardt H, Rothbauer U (2011) Engineering antibodies and proteins for molecular in vivo imaging. Curr Opin Biotechnol 22:882–887

    Article  CAS  PubMed  Google Scholar 

  7. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  PubMed  Google Scholar 

  8. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  PubMed  Google Scholar 

  12. Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21:1303–1304

    Article  CAS  PubMed  Google Scholar 

  13. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  PubMed  Google Scholar 

  14. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–13086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314

    Article  CAS  PubMed  Google Scholar 

  17. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  19. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  Google Scholar 

  21. Hirvonen LM, Wicker K, Mandula O, Heintzmann R (2009) Structured illumination microscopy of a living cell. Eur Biophys J 38:807–812

    Article  PubMed  Google Scholar 

  22. Shao L, Kner P, Rego EH, Gustafsson MGL (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046

    Article  CAS  PubMed  Google Scholar 

  23. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MGL (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6:339–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MGL (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci 109:5311–5315

    Article  CAS  PubMed  Google Scholar 

  25. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Baddeley D, Chagin VO, Schermelleh L, Martin S, Pombo A, Carlton PM, Gahl A, Domaing P, Birk U, Leonhardt H, Cremer C, Cardoso MC (2010) Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 38:e8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Brown ACN, Oddos S, Dobbie IM, Alakoskela J-M, Parton RM, Eissmann P, Neil MAA, Dunsby C, French PMW, Davis I, Davis DM (2011) Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol 9:e1001152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I, Leonhardt H, Muller-Reichert T, Gerlich DW (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331:1616–1620

    Article  CAS  PubMed  Google Scholar 

  29. Markaki Y, Gunkel M, Schermelleh L, Beichmanis S, Neumann J, Heidemann M, Leonhardt H, Eick D, Cremer C, Cremer T (2010) Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 75:475–492

    Article  CAS  PubMed  Google Scholar 

  30. Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci 108:4846–4851

    Article  CAS  PubMed  Google Scholar 

  31. Green LC, Kalitsis P, Chang TM, Cipetic M, Kim JH, Marshall O, Turnbull L, Whitchurch CB, Vagnarelli P, Samejima K, Earnshaw WC, Choo KHA, Hudson DF (2012) Contrasting roles of condensin I and II in mitotic chromosome formation. J Cell Sci 125(pt 6):1591–1604

    Article  CAS  PubMed  Google Scholar 

  32. Mikeladze-Dvali T, von Tobel L, Strnad P, Knott G, Leonhardt H, Schermelleh L, Gönczy P (2012) Analysis of centriole elimination during C. elegans oogenesis. Development 139:1670–1679

    Article  CAS  PubMed  Google Scholar 

  33. Weil TT, Parton RM, Herpers B, Soetaert J, Veenendaal T, Xanthakis D, Dobbie IM, Halstead JM, Hayashi R, Rabouille C, Davis I (2010) Drosophila patterning is established by differential association of mRNAs with P bodies. Nat Cell Biol 14:1305–1313

    Article  Google Scholar 

  34. Strauss MP, Liew ATF, Turnbull L, Whitchurch CB, Monahan LG, Harry EJ (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10:e1001389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14:1148–1158

    Article  CAS  PubMed  Google Scholar 

  36. Sonnen KF, Schermelleh L, Leonhardt H, Nigg EA (2012) 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol Open 1:965–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Carlton PM, Boulanger J, Kervrann C, Sibarita J-B, Salamero J, Gordon-Messer S, Bressan D, Haber JE, Haase S, Shao L, Winoto L, Matsuda A, Kner P, Uzawa S, Gustafsson M, Kam Z, Agard DA, Sedat JW (2010) Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc Natl Acad Sci 107:16016–16022

    Article  CAS  PubMed  Google Scholar 

  38. Dobbie IM, King E, Parton RM, Carlton PM, Sedat JW, Swedlow JR, Davis I (2011) OMX: a new platform for multimodal, multichannel wide-field imaging. Cold Spring Harb Protoc 2011:899–909

    Article  PubMed  Google Scholar 

  39. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bennett BT, Bewersdorf J, Knight KL (2009) Immunofluorescence imaging of DNA damage response proteins: optimizing protocols for super-resolution microscopy. Methods 48:63–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Markaki Y, Smeets D, Cremer M, Schermelleh L (2013) Fluorescence in situ hybridization applications for super-resolution 3D-structured illumination microscopy. Methods Mol Biol 950:43–64

    PubMed  Google Scholar 

  42. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7:717–719

    Article  CAS  PubMed  Google Scholar 

  44. Pellett PA, Sun X, Gould TJ, Rothman JE, Xu M-Q, Corrêa IR, Bewersdorf J (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2:2364–2371

    Article  PubMed Central  PubMed  Google Scholar 

  45. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157

    Article  CAS  PubMed  Google Scholar 

  46. Sadoni N, Sullivan KF, Weinzierl P, Stelzer EH, Zink D (2001) Large-scale chromatin fibers of living cells display a discontinuous functional organization. Chromosoma 110:39–51

    Article  CAS  PubMed  Google Scholar 

  47. Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res 276:10–23

    Article  CAS  PubMed  Google Scholar 

  48. Daneshtalab N, Doré JJE, Smeda JS (2010) Troubleshooting tissue specificity and antibody selection: procedures in immunohistochemical studies. J Pharmacol Toxicol Methods 61:127–135

    Article  CAS  PubMed  Google Scholar 

  49. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105:2415–2420

    Article  CAS  PubMed  Google Scholar 

  50. Buck SB, Bradford J, Gee KR, Agnew BJ, Clarke ST, Salic A (2008) Detection of S-phase cell cycle progression using 5-ethynyl-2′-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2′-deoxyuridine antibodies. Biotechniques 44:927–929

    Article  CAS  PubMed  Google Scholar 

  51. Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21:766–776

    Article  CAS  PubMed  Google Scholar 

  52. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8:1027–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31:1076–1078, 1080, 1082 passim

    Google Scholar 

  54. Parton RM, Davis I (2006) Lifting the fog: image restoration by deconvolution. In: Celis JE (ed) Cell biology: a laboratory handbook, 3rd edn. Academic, New York, pp 187–200

    Chapter  Google Scholar 

  55. Gibson SF, Lanni F (1992) Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J Opt Soc Am A 9:154–166

    Article  CAS  PubMed  Google Scholar 

  56. Arigovindan M, Sedat JW, Agard DA (2012) Effect of depth dependent spherical aberrations in 3D structured illumination microscopy. Opt Express 20:6527–6541

    Article  PubMed  Google Scholar 

  57. Cordes T, Maiser A, Steinhauer C, Schermelleh L, Tinnefeld P (2011) Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Phys Chem Chem Phys 13:6699–6709

    Article  CAS  PubMed  Google Scholar 

  58. Cremer C, Kaufmann R, Gunkel M, Pres S, Weiland Y, Müller P, Ruckelshausen T, Lemmer P, Geiger F, Degenhard S, Wege C, Lemmermann NAW, Holtappels R, Strickfaden H, Hausmann M (2011) Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol J 6:1037–1051

    Article  CAS  PubMed  Google Scholar 

  59. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Gould TJ, Verkhusha VV, Hess ST (2009) Imaging biological structures with fluorescence photoactivation localization microscopy. Nat Protoc 4:291–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Baddeley D, Cannell MB, Soeller C (2010) Visualization of localization microscopy data. Microsc Microanal 16:64–72

    Article  CAS  PubMed  Google Scholar 

  62. Grunwald C, Schulze K, Giannone G, Cognet L, Lounis B, Choquet D, Tampé R (2011) Quantum-yield-optimized fluorophores for site-specific labeling and super-resolution imaging. J Am Chem Soc 133:8090–8093

    Article  CAS  PubMed  Google Scholar 

  63. Silverton EW, Navia MA, Davies DR (1977) Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci U S A 74:5140–5144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Dong Y, Shannon C (2000) Heterogeneous immunosensing using antigen and antibody monolayers on gold surfaces with electrochemical and scanning probe detection. Anal Chem 72:2371–2376

    Article  CAS  PubMed  Google Scholar 

  65. Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  66. Waters JC (2009) Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 185:1135–1148

    Article  CAS  PubMed  Google Scholar 

  67. Zinchuk V, Zinchuk O, Okada T (2007) Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem 40:101–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Jaskolski F, Mulle C, Manzoni OJ (2005) An automated method to quantify and visualize colocalized fluorescent signals. J Neurosci Methods 146:42–49

    Article  CAS  PubMed  Google Scholar 

  69. Wörz S, Sander P, Pfannmöller M, Rieker RJ, Joos S, Mechtersheimer G, Boukamp P, Lichter P, Rohr K (2010) 3D geometry-based quantification of colocalizations in multichannel 3D microscopy images of human soft tissue tumors. IEEE Trans Med Imaging 29:1474–1484

    Article  PubMed  Google Scholar 

  70. Lachmanovich E, Shvartsman DE, Malka Y, Botvin C, Henis YI, Weiss AM (2003) Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies. J Microsc 212:122–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Heinrich Leonhardt and the BioImaging Network Munich for generous support, Andreas Maiser for technical help, Fabio Spada and Markus Rehberg for providing samples, and Ian Dobbie, Justin Demmerle, and Yolanda Markaki for valuable comments on the manuscript. This work was supported by grants from the Center of Integrated Protein Science Munich and the DFG (TR5 and SCHE1596/2-1). The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smeets, D., Neumann, J., Schermelleh, L. (2014). Application of Three-Dimensional Structured Illumination Microscopy in Cell Biology: Pitfalls and Practical Considerations. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics