Skip to main content

Super-Resolution Microscopy: Principles, Techniques, and Applications

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

Diffraction sets a physical limit for the theoretically achievable resolution; however, it is possible to circumvent this barrier. That’s what microscopists have been doing in recent years and in many ways at once, starting the era of super-resolution in light microscopy. High-resolution approaches come in various flavors, and each has specific advantages or disadvantages. For example, near-field techniques avoid the problems associated with the propagation of light by getting very close to the specimen. In the far-field, the strategies include increasing the light collecting capability, sharpening the point spread function or high-precision localization of individual fluorescent molecules. In this chapter, the major super-resolution approaches are introduced briefly, together with their pros and cons, and exemplar biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Synge EH (1928) XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos Mag 6:356–362

    CAS  Google Scholar 

  2. Ash EA, Nicholls G (1972) Super-resolution aperture scanning microscope. Nature 237:510–512

    CAS  PubMed  Google Scholar 

  3. Lewis A, Isaacson M, Harootunian A, Muray A (1984) Development of a 500 Å spatial resolution light microscope. Ultramicroscopy 13:227–231. doi:10.1016/0304-3991(84)90201-8

    Google Scholar 

  4. Pohl DW (1994) Near-field optics: light for the world of NANO. J Vac Sci Technol B 12:1441. doi:10.1116/1.587313

    Google Scholar 

  5. Durig U, Pohl DW, Rohner F (1986) Near-field optical-scanning microscopy. J Appl Phys 59:3318. doi:10.1063/1.336848

    Google Scholar 

  6. Betzig E, Trautman JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–195. doi:10.1126/science.257.5067.189

    CAS  PubMed  Google Scholar 

  7. Gerton J, Wade L, Lessard G et al (2004) Tip-enhanced fluorescence microscopy at 10 nanometer resolution. Phys Rev Lett 93:180801. doi:10.1103/PhysRevLett.93.180801

    PubMed  Google Scholar 

  8. Lessard G (2003) Apertureless near-field optical microscopy for fluorescence imaging. Dissertation, California Institute of Technology, Pasadena, CA

    Google Scholar 

  9. Hausmann M, Perner B, Rapp A et al (2006) Near-field scanning optical microscopy in cell biology and cytogenetics. Methods Mol Biol 319:275–294. doi:10.1007/978-1-59259-993-6_14

    PubMed  Google Scholar 

  10. Gheber LA, Hwang J, Edidin M (1998) Design and optimization of a near-field scanning optical microscope for imaging biological samples in liquid. Appl Optics 37:3574–3581

    CAS  Google Scholar 

  11. Hwang J, Gheber LA, Margolis L, Edidin M (1998) Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J 74:2184–2190. doi:10.1016/S0006-3495(98)77927-5

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Chen Y, Shao L, Ali Z et al (2008) NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2 T-cell expansion. Blood 111:4220–4232. doi:10.1182/blood-2007-07-101691

    CAS  PubMed  Google Scholar 

  13. Binnig G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. doi:10.1103/PhysRevLett.56.930

    PubMed  Google Scholar 

  14. Müller DJ, Dufrêne YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21:1–9. doi:10.1016/j.tcb.2011.04.008

    Google Scholar 

  15. Rugar D, Hansma P (1990) Atomic force microscopy. Phys Today 43:23–30

    CAS  Google Scholar 

  16. Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope—force mapping and profiling on a sub 100-Å scale. J Appl Phys 61:4723. doi:10.1063/1.338807

    CAS  Google Scholar 

  17. Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692. doi:10.1016/0167-2584(93)90906-Y

    CAS  Google Scholar 

  18. Huang L, Su C (2004) A torsional resonance mode AFM for in-plane tip surface interactions. Ultramicroscopy 100:277–285. doi:10.1016/j.ultramic.2003.11.010

    CAS  PubMed  Google Scholar 

  19. Schaap IAT, Carrasco C, de Pablo PJ, Schmidt CF (2011) Kinesin walks the line: single motors observed by atomic force microscopy. Biophys J 100:2450–2456. doi:10.1016/j.bpj.2011.04.015

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Sharma S, Grintsevich EE, Phillips ML et al (2011) Atomic force microscopy reveals drebrin induced remodeling of f-actin with subnanometer resolution. Nano Lett 11:825–827. doi:10.1021/nl104159v

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Dickenson NE, Moore D, Suprenant KA, Dunn RC (2007) Vault ribonucleoprotein particles and the central mass of the nuclear pore complex. Photochem Photobiol 83:686–691. doi:10.1111/j.1751-1097.2007.00050.x

    CAS  PubMed  Google Scholar 

  22. Quist A, Doudevski I, Lin H et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:10427–10432. doi:10.1073/pnas.0502066102

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Hinterdorfer P, Dufrêne YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355. doi:10.1038/nmeth871

    CAS  PubMed  Google Scholar 

  24. Bergkvist M, Cady NC (2011) Chemical functionalization and bioconjugation strategies for atomic force microscope cantilevers. Methods Mol Biol 751:381–400. doi:10.1007/978-1-61779-151-2_24

    CAS  PubMed  Google Scholar 

  25. Roduit C, van der Goot FG, De Los Rios P et al (2008) Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophys J 94:1521–1532. doi:10.1529/biophysj.107.112862

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Rief M, Gautel M, Oesterhelt F et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112. doi:10.1126/science.276.5315.1109

    CAS  PubMed  Google Scholar 

  27. Linke WA, Grützner A (2007) Pulling single molecules of titin by AFM—recent advances and physiological implications. Pflugers Arch 456:101–115. doi:10.1007/s00424-007-0389-x

    PubMed  Google Scholar 

  28. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145. doi:10.1083/jcb.89.1.141

    CAS  PubMed  Google Scholar 

  29. Toomre D, Bewersdorf J (2010) A new wave of cellular imaging. Annu Rev Cell Dev Biol 26:285–314. doi:10.1146/annurev-cellbio-100109-104048

    CAS  PubMed  Google Scholar 

  30. Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698. doi:10.1038/ncb837

    CAS  PubMed  Google Scholar 

  31. Yildiz A (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065. doi:10.1126/science.1084398

    CAS  PubMed  Google Scholar 

  32. Saffarian S, Kirchhausen T (2008) Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys J 94:2333–2342. doi:10.1529/biophysj.107.117234

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Karatekin E, Tran VS, Huet S et al (2008) A 20-nm step toward the cell membrane preceding exocytosis may correspond to docking of tethered granules. Biophys J 94:2891–2905. doi:10.1529/biophysj.107.116756

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Minsky M (1961) Microscopy apparatus. US Patent 3,013,467A.

    Google Scholar 

  35. Stelzer EHK (1998) Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J Microsc 189:15–24. doi:10.1046/j.1365-2818.1998.00290.x

    Google Scholar 

  36. Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59:427–471. doi:10.1088/0034-4885/59/3/003

    Google Scholar 

  37. Cox IJ, Sheppard CJ, Wilson T (1982) Improvement in resolution by nearly confocal microscopy. Appl Optics 21:778–781. doi:10.1364/AO.21.000778

    CAS  Google Scholar 

  38. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782. doi:10.1364/OL.19.000780

    CAS  PubMed  Google Scholar 

  39. Heintzmann R, Cremer CG (1999) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. In: Altshuler GB, Benaron DA, Ehrenberg B et al (eds) SPIE proceedings. SPIE, pp 185–196. doi:10.1117/12.336833

  40. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–13086. doi:10.1073/pnas.0406877102

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796. doi:10.1038/nmeth929

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi:10.1126/science.1127344

    CAS  PubMed  Google Scholar 

  43. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272. doi:10.1529/biophysj.106.091116

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hell S, Stelzer EHK (1992) Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A 9:2159. doi:10.1364/JOSAA.9.002159

    Google Scholar 

  45. Gustafsson MG, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16. doi:10.1046/j.1365-2818.1999.00576.x

    CAS  PubMed  Google Scholar 

  46. Gugel H, Bewersdorf J, Jakobs S et al (2004) Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy. Biophys J 87:4146–4152. doi:10.1529/biophysj.104.045815

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Nagorni M, Hell SW (1998) 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J Struct Biol 123:236–247. doi:10.1006/jsbi.1998.4037

    CAS  PubMed  Google Scholar 

  48. Lang M, Müller T, Engelhardt J, Hell SW (2007) 4Pi microscopy of type A with 1-photon excitation in biological fluorescence imaging. Opt Express 15:2459–2467. doi:10.1364/OE.15.002459

    PubMed  Google Scholar 

  49. Hell S (1992) Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt Commun 93:277–282

    Google Scholar 

  50. Bewersdorf J, Egner A, Hell SW (2006) 4Pi Microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, Boston, MA, pp 561–570

    Google Scholar 

  51. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    CAS  PubMed  Google Scholar 

  52. Hüve J, Wesselmann R, Kahms M, Peters R (2008) 4Pi microscopy of the nuclear pore complex. Biophys J 95:877–885. doi:10.1529/biophysj.107.127449

    PubMed Central  PubMed  Google Scholar 

  53. Egner A, Hell SW (2005) Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol 15:207–215. doi:10.1016/j.tcb.2005.02.003

    CAS  PubMed  Google Scholar 

  54. Bewersdorf J, Pick R, Hell SW (1998) Multifocal multiphoton microscopy. Opt Lett 23:655–657. doi:10.1364/OL.23.000655

    CAS  PubMed  Google Scholar 

  55. Egner A, Andresen V, Hell SW (2002) Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment. J Microsc 206:24–32. doi:10.1046/j.1365-2818.2002.01001.x

    CAS  PubMed  Google Scholar 

  56. Egner A, Jakobs S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A 99:3370–3375. doi:10.1073/pnas.052545099

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Egner A, Verrier S, Goroshkov A et al (2004) 4Pi-microscopy of the Golgi apparatus in live mammalian cells. J Struct Biol 147:70–76. doi:10.1016/j.jsb.2003.10.006

    CAS  PubMed  Google Scholar 

  58. Schmidt R, Wurm CA, Jakobs S et al (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5:539–544. doi:10.1038/nmeth.1214

    CAS  PubMed  Google Scholar 

  59. Gustafsson MGL, Agard DA, Sedat JW (1995) Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses. In: Wilson T, Cogswell CJ (eds) SPIE proceedings. SPIE, pp 147–156. doi:10.1117/12.205334

  60. Gustafsson MG (1999) Extended resolution fluorescence microscopy. Curr Opin Struct Biol 9:627–634. doi:10.1016/S0959-440X(99)00016-0

    CAS  PubMed  Google Scholar 

  61. Shao L, Isaac B, Uzawa S et al (2008) I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 94:4971–4983. doi:10.1529/biophysj.107.120352

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210. doi:10.1073/pnas.97.15.8206

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Willig KI, Rizzoli SO, Westphal V et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939. doi:10.1038/nature04592

    CAS  PubMed  Google Scholar 

  64. Hoopmann P, Punge A, Barysch SV et al (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci U S A 107:19055–19060. doi:10.1073/pnas.1007037107

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355. doi:10.1038/nbt895

    CAS  PubMed  Google Scholar 

  66. Dyba M, Hell S (2002) Focal spots of size lambda/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys Rev Lett 88:1–4. doi:10.1103/PhysRevLett.88.163901

    Google Scholar 

  67. Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903. doi:10.1103/PhysRevLett.94.143903

    PubMed  Google Scholar 

  68. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–418. doi:10.1007/BF02956173

    Google Scholar 

  69. Kittel RJ, Wichmann C, Rasse TM et al (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054. doi:10.1126/science.1126308

    CAS  PubMed  Google Scholar 

  70. Willig KI, Kellner RR, Medda R et al (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723. doi:10.1038/nmeth922

    CAS  PubMed  Google Scholar 

  71. Donnert G, Keller J, Wurm CA et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92:L67–L69. doi:10.1529/biophysj.107.104497

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4:915–918. doi:10.1038/nmeth1108

    CAS  PubMed  Google Scholar 

  73. Nägerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105:18982–18987. doi:10.1073/pnas.0810028105

    PubMed Central  PubMed  Google Scholar 

  74. Westphal V, Rizzoli SO, Lauterbach MA et al (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320:246–249. doi:10.1126/science.1154228

    CAS  PubMed  Google Scholar 

  75. Kamin D, Lauterbach MA, Westphal V et al (2010) High- and low-mobility stages in the synaptic vesicle cycle. Biophys J 99:675–684. doi:10.1016/j.bpj.2010.04.054

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84. doi:10.1038/nmeth.1537

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Rankin BR, Moneron G, Wurm CA et al (2011) Nanoscopy in a living multicellular organism expressing GFP. Biophys J 100:L63–L65. doi:10.1016/j.bpj.2011.05.020

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335:551. doi:10.1126/science.1215369

    CAS  PubMed  Google Scholar 

  79. Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2:910–919. doi:10.1038/nmeth817

    CAS  PubMed  Google Scholar 

  80. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016. doi:10.1146/annurev.biochem.77.061906.092014

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Fiolka R, Shao L, Rego EH et al (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci U S A 109:5311–5315. doi:10.1073/pnas.1119262109

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175. doi:10.1083/jcb.201002018

    CAS  PubMed  Google Scholar 

  83. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    CAS  PubMed  Google Scholar 

  84. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A 19:1599–1609. doi:10.1364/JOSAA.19.001599

    Google Scholar 

  85. Rego EH, Shao L, Macklin JJ et al (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109:E135–E143. doi:10.1073/pnas.1107547108

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Gustafsson MGL, Shao L, Carlton PM et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970. doi:10.1529/biophysj.107.120345

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Schermelleh L, Carlton PM, Haase S et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336. doi:10.1126/science.1156947

    CAS  PubMed Central  PubMed  Google Scholar 

  88. York AG, Parekh SH, Dalle Nogare D et al (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9:749–754. doi:10.1038/nmeth.2025

    PubMed Central  PubMed  Google Scholar 

  89. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783. doi:10.1016/S0006-3495(02)75618-X

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Dedecker P, Hofkens J, Hotta J-I (2008) Diffraction-unlimited optical microscopy. Mater Today 11:12–21. doi:10.1016/S1369-7021(09)70003-3

    Google Scholar 

  91. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8:499–508. doi:10.1038/nmeth.1605

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Lidke K, Rieger B, Jovin T, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13:7052–7062. doi:10.1364/OPEX.13.007052

    PubMed  Google Scholar 

  93. Bobroff N (1986) Position measurement with a resolution and noise-limited instrument. Rev Sci Instrum 57:1152. doi:10.1063/1.1138619

    Google Scholar 

  94. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753. doi:10.1126/science.1146598

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877. doi:10.1126/science.1074952

    CAS  PubMed  Google Scholar 

  96. Hess ST, Gould TJ, Gudheti MV et al (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 104:17370–17375. doi:10.1073/pnas.0708066104

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Greenfield D, McEvoy AL, Shroff H et al (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7:e1000137. doi:10.1371/journal.pbio.1000137

    PubMed Central  PubMed  Google Scholar 

  98. Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157. doi:10.1038/nmeth.1176

    CAS  PubMed  Google Scholar 

  99. Kao HP, Verkman AS (1994) Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys J 67:1291–1300. doi:10.1016/S0006-3495(94)80601-0

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813. doi:10.1126/science.1153529

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Xu K, Zhong G, Zhuang X (2013) Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–456. doi:10.1126/science.1232251

    CAS  PubMed  Google Scholar 

  102. Shtengel G, Galbraith JA, Galbraith CG et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106:3125–3130. doi:10.1073/pnas.0813131106

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Banala S, Maurel D, Manley S, Johnsson K (2012) A caged, localizable rhodamine derivative for superresolution microscopy. ACS Chem Biol 7:289–293. doi:10.1021/cb2002889

    CAS  PubMed  Google Scholar 

  104. Grimm JB, Sung AJ, Legant WR et al (2013) Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes. ACS Chem Biol 8(6):1303–1310. doi:10.1021/cb4000822

  105. Lang T, Rizzoli SO (2010) Membrane protein clusters at nanoscale resolution: more than pretty pictures. Physiology (Bethesda) 25:116–124. doi:10.1152/physiol.00044.2009

    CAS  Google Scholar 

  106. Saka S, Rizzoli SO (2012) Super-resolution imaging prompts re-thinking of cell biology mechanisms: selected cases using stimulated emission depletion microscopy. Bioessays 34:386–395. doi:10.1002/bies.201100080

    PubMed  Google Scholar 

  107. Opazo F, Levy M, Byrom M et al (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9:938–939. doi:10.1038/nmeth.2179

    CAS  PubMed  Google Scholar 

  108. Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9:582–584. doi:10.1038/nmeth.1991

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saka, S.K. (2014). Super-Resolution Microscopy: Principles, Techniques, and Applications. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics